scholarly journals Innovative processing routes in manufacturing of metal matrix composite materials

10.30544/629 ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 1-13
Author(s):  
Jovana Ruzic ◽  
Marko Simić ◽  
Nikolay Stoimenov ◽  
Dušan Božić ◽  
Jelena Stašić

Metal matrix composites (MMCs) belong to a group of modern materials owing to their excellent technological, mechanical, and physical properties such as excellent wear and corrosion resistance, high electrical and thermal conductivity, improved strength and hardness. Final properties of MMCs are affected equally by all steps of its manufacturing process. It is shown that by using adequate process parameters to obtain starting materials (reaching the specific size, shape, and reactivity) the control of volume fraction and distribution of reinforcements within the matrix can be achieved. For this purpose, mechanical alloying has been appointed as a good approach. MMCs can be produced using powder metallurgy, ingot metallurgy, and additive manufacturing techniques. Combining high-energy ball milling with these techniques enables the design of an innovative processing route for MMCs manufacturing. Mechanochemical process (achieved using high-energy ball milling) was employed in three manufacturing procedures: hot pressing, compocasting, and laser melting/sintering for obtaining of the suitable powder. These production routes for MMCs manufacturing were the subject of this work. The aim of MMCs design is to establish an optimal combination of production techniques merged into the cost-effective fabrication route for obtaining MMCs with required properties.

2013 ◽  
Vol 745-746 ◽  
pp. 281-285
Author(s):  
Y.B. Yuan ◽  
Rui Xiao Zheng ◽  
Su Jing Ge ◽  
Han Yang ◽  
Chao Li Ma

Al86Ni7Y4.5Co1La1.5 (at.%) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated and extruded by using vacuum hot press sintering under different process conditions, sintering temperature, extrusion pressure, sintering time, etc.. The microstructure and morphology of the powder and consolidated bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phase transformation of the powder was investigated by differential scanning calorimetry (DSC). Mechanical properties of the consolidated bulk alloy were examined. The results showed that as the milling time increase, the volume fraction of amorphous materials and the hardness and yield strength of the bulk alloy were obvious improved.


2013 ◽  
Vol 749 ◽  
pp. 157-160
Author(s):  
Hui Qin Cao ◽  
Zhi Meng Guo ◽  
Wei Wei Yang ◽  
Ji Luo

The fine and homogenous distribution of the SiC particles in Al metal matrix is basic prerequisite for improving the properties of the SiCp/Al composites. In this paper, the effects of high energy ball milling and ordinary ball milling on the spatial distribution of reinforcement of the SiCp/Al composites have been investigated. The result showed that high energy ball milling is the most effective method to get homogeneous distribution of SiC particles in Al matrix. There were many clusters of SiC particles in the composites fabricated by ordinary ball milling.


2013 ◽  
Vol 762 ◽  
pp. 457-464 ◽  
Author(s):  
Riccardo Casati ◽  
Matteo Amadio ◽  
Carlo Alberto Biffi ◽  
David Dellasega ◽  
Ausonio Tuissi ◽  
...  

Metal matrix nanocomposites have been produced by powder metallurgy route. Al and nanoAl2O3powders were grinded through high energy ball milling. Then, the composite powders were sintered by Equal Channel Angular Pressing (ECAP). 12 ECAP passes were carried out in order to improve the dispersion of the hard particles. SEM analysis was performed to investigate the distribution of the ceramic nanoparticles within the matrix. Hardness tests were executed to evaluate the mechanical behavior of the nanocomposites. Finally, mechanical strength values obtained by numerical models were compared with those estimated from hardness measurements. High energy ball milling followed by ECAP process revealed to be a suitable route for the production of metal matrix composites reinforced with well dispersed nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document