scholarly journals Synchrotron Diffraction Study of the Cementite Phase in Cold Drawn Pearlitic Steel Wires

2013 ◽  
Vol 768-769 ◽  
pp. 380-387 ◽  
Author(s):  
Jeroen Tacq ◽  
Martin Kriška ◽  
Marc Seefeldt

Energy dispersive synchrotron diffraction has been carried out on cold drawn pearlitic steel wires. In this paper the observed cementite peaks are analysed. For a broad range of true drawing strains sin²(Ψ) curves have been measured. The residual stress in the cementite is found to saturate after reaching a maximum at a strain of about 1.6. No indication of significant texture development in the cementite could be observed. An explanation is given in terms of possible physical mechanisms. Peak broadening was observed at the early stages of deformation.

2013 ◽  
Vol 46 (3) ◽  
pp. 610-618 ◽  
Author(s):  
M. Meixner ◽  
M. Klaus ◽  
Ch. Genzel

The influence of the gauge volume size and shape on the analysis of steep near-surface residual stress gradients by means of energy-dispersive synchrotron diffraction is studied theoretically. Cases are considered where the irradiated sample volume is confined by narrow-slit systems, in both the primary and the diffracted beam, to dimensions comparable to the `natural' 1/einformation depth τ1/eof the X-rays. It is shown that the ratio between τ1/e, defined by the material's absorption, and the immersion depthhGVof the gauge volume into the sample is the crucial parameter that shapes thedψhklor ∊ψhklversussin2ψ distributions obtained in the Ψ mode of X-ray stress analysis. Since the actual information depth 〈z〉GVto which the measured X-ray signal has to be assigned is a superposition of geometrical and exponential weighting functions, ambiguities in the conventional plot of the Laplace stressesversus〈z〉GVmay occur for measurements performed using narrow-slit configurations. To avoid conflicts in data analysis in these cases, a modified formalism is proposed for the evaluation of the real space residual stress profiles σ||(z), which is based on a two-dimensional least-squares fit procedure.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 178
Author(s):  
Jin Young Jung ◽  
Kang Suk An ◽  
Pyeong Yeol Park ◽  
Won Jong Nam

The relationship between microstructures and ductility parameters, including reduction of area, elongation to failure, occurrence of delamination, and number of turns to failure in torsion, in hypereutectoid pearlitic steel wires was investigated. The transformed steel wires at 620 °C were successively dry-drawn to drawing strains from 0.40 to 2.38. To examine the effects of hot-dip galvanizing conditions, post-deformation annealing was performed on cold drawn steel wires (ε = 0.99, 1.59, and 2.38) with a different heating time of 30–3600 s at 500 °C in a salt bath. In cold drawn wires, elongation to failure dropped due to the formation of dislocation substructures, decreased slowly due to the increase of dislocation density, and saturated with drawing strain. During annealing, elongation to failure increased due to recovery, and saturated with annealing time. The variation of elongation to failure in cold drawn and annealed steel wires would depend on the distribution of dislocations in lamellar ferrite. The orientation of lamellar cementite and the shape of cementite particles would become an effective factor controlling number of turns to failure in torsion of cold drawn and annealed steel wires. The orientation and shape of lamellar cementite would become microstructural features controlling reduction of area of cold drawn and annealed steel wires. The density of dislocations contributed to reduction of area to some extent.


1997 ◽  
Vol 45 (3) ◽  
pp. 1201-1212 ◽  
Author(s):  
J. Languillaume ◽  
G. Kapelski ◽  
B. Baudelet

2013 ◽  
Vol 132 ◽  
pp. 233-238 ◽  
Author(s):  
Y.J. Li ◽  
P. Choi ◽  
S. Goto ◽  
C. Borchers ◽  
D. Raabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document