Effects of Mn, Si and Cr Addition on the Spheroidization of Cementite in Hypereutectoid Fe-1mass%C Steel

2014 ◽  
Vol 783-786 ◽  
pp. 1053-1057 ◽  
Author(s):  
Guo Hong Zhang ◽  
Dong Woo Suh ◽  
Kai Ming Wu

Effect of Mn, Si and Cr on spheroidization of cementite in Fe-1mass%C steel has been investigated over a range of austenitizing temperatures. In Fe-1C steel, a fully spheroidized structure is obtained but some large cementite particles are formed. The addition of 1.5 mass% Si or Cr accelerates spheroidization of cementite. An addition of Cr remarkably refine the cementite particle size, but the influence of Si addition on the cementite particle size is not remarkable. A fully spheroidized structure fails to develop in steel with the addition of 1.5% Mn under the condition used in present study. Some lamellar cementite still exist in the 1.5Mn steel. The pearlite-promoting effect of Mn is possibly attributed to the inhomogeneous distribution of cementite particles during the intercritical austenitization.

1998 ◽  
Vol 84 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Takashi INOUE ◽  
Yuzo HOSOI ◽  
Koe NAKAJIMA ◽  
Hiroyuki TAKENAKA ◽  
Tomonori HANYUDA

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qingke Nie ◽  
Huawei Li ◽  
Haipeng Yang ◽  
Tengfei Ni ◽  
Sichen Jiang

Sand column tests were conducted to investigate the seepage transport of silicon powders (SPs) with two wide particle size ranges (30-2000 nm and 2-70 μm), including the cotransport of SPs and copper ions. The results show that the graded large-scale SP has an obvious inhibiting influence on the transport of copper ions. In contrast, in the presence of the graded small-scale SP, the concentration of copper ions in the effluent tends to increase; i.e., there appears to be a promoting effect. However, after a long transport distance, the presence of SPs, regardless of particle size, has an overall retarding effect on heavy metal pollutants (e.g., copper ions). The promoting effect of the increase in seepage velocity on the concentration of copper ions in the effluent is greater with the graded large-scale SPs than with the graded small-scale SPs. In terms of the microstructural characteristics by metallographic microscopy, the average particle size of the deposited graded small-scale SPs is almost constant at different transport distances, while that of the deposited graded large-scale SPs tend to decrease significantly with increasing transport distance; i.e., notable bed filtration is exhibited in the latter case. This physical mechanism also determines the sequence and rate of the retarding effect of SPs on heavy metal ions under seepage flow.


2016 ◽  
Vol 190 ◽  
pp. 487-508 ◽  
Author(s):  
Binjie Hu ◽  
Yiyang Kong ◽  
Rongmeihui Zheng ◽  
Jie Dong ◽  
Kwang-Leong Choy ◽  
...  

C8mimPF6, as a type of room temperature ionic liquid (RTIL) with non-volatility and a low melting point, may replace conventional coalescing agents in latex coatings, thus preventing volatile organic compound (VOC) emissions caused by coalescing agents. In this study, systematic investigations on the effect of various factors including initiator type, initiator concentration, temperature and C8mimPF6 concentration on the conversion of latex and droplet/particle size of a miniemulsion during polymerization have been conducted. The presence of C8mimPF6 has shown to have a marked effect on the reaction rate. Such an effect strongly depends on the type of initiator being used. For polymerization initiated by 2,2-azobis (isobutyronitrile) (AIBN), C8mimPF6 had a promoting effect on the reaction rate at low concentrations, but this effect might be reversed upon certain C8mimPF6 concentrations, e.g. 10 wt%. While initiated by H2O2/Vc, this promoting effect faded even at low C8mimPF6 concentrations. The different limiting factors, which determine the reaction rate with different types of initiator, may contribute to the results. For reactions initiated by hydrophobic AIBN, the reaction was dominated by kinetics. The presence of C8mimPF6 may cause an enhanced chain propagation rate and reduced chain termination rate, which may further contribute to the increase in reaction rate at lower concentrations of C8mimPF6. With hydrophilic H2O2/Vc, the resistance for the transfer of radicals into a droplet/particle might be increased significantly with increasing C8mimPF6 concentration due to a tighter interfacial structure at lower concentrations of C8mimPF6. Thus, such transfer of radicals may become a limiting step whilst the presence of C8mimPF6 increases the transfer resistance on radicals resulting in a decrease in reaction rate. The reaction temperature, which is related to the decomposition temperature of the initiator being used, was another factor affecting the conversion of latex and the size of latex particles. A higher temperature e.g. 50 °C promotes the coalescence of droplets/particles, and hence produces larger latex particles. In the presence of C8mimPF6, the reaction temperature could be significantly reduced to as low as 40 °C, which prevents phase separation. The final particle size depends on the nucleation mechanism as well as the coalescence of droplets/particles during polymerization.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Wear ◽  
2020 ◽  
pp. 203579
Author(s):  
G. Haider ◽  
M. Othayq ◽  
J. Zhang ◽  
R.E. Vieira ◽  
S.A. Shirazi

Sign in / Sign up

Export Citation Format

Share Document