Structural and Optical Properties of ZnO1-xSx Thin Films Grown by Pulse Laser Deposition on Glass Substrates

2014 ◽  
Vol 787 ◽  
pp. 18-22
Author(s):  
Lei Zhang ◽  
Liang Heng Wang ◽  
Ming Kai Li ◽  
Xun Zhong Shang ◽  
Yun Bin He

With a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, ZnO is attractive for blue and ultra-violet optoelectronic devices, and transparent conducting oxide films for photovoltaic applications. For a semiconductor to be useful, particularly in reference to optoelectronic devices, band gap engineering is of great importance in device development. Alloying of MgO and CdO with ZnO has been studied extensively in comparison to other ZnO alloys incorporating equivalent anions like ZnO1-xSx (ZnOS). In this work, high-quality ZnOS thin films were grown on glass substrates by pulsed laser deposition using a ZnS ceramic target with varying O2 partial pressures between 0 and 6 Pa. ZnOS alloys with a wurtzite structure were achieved and no evident phase separation was observed in the whole composition range as determined by X-ray diffraction. The optical transmission measurements show that the average transmittance in the visible range of the films is about 80%. The absorption edges of the films first shift towards low-energy side with increasing the oxygen partial pressure and then blueshift when the oxygen partial pressure is over 2 Pa. The bandgap energies of the ZnOS films were calculated to change from 3.06 to 3.72 eV, showing a nonlinear variation with a bowing behavior that was previously reported.

Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 136
Author(s):  
Ping Tang ◽  
Weimin Wang ◽  
Bing Li ◽  
Lianghuan Feng ◽  
Guanggen Zeng

Aluminum antimony (AlSb) is a promising photovoltaic material with a band gap of about 1.62 eV. However, AlSb is highly deliquescent and not stable, which has brought great difficulties to the applications. Based on the above situation, there are two purposes for preparing our Zn-doped AlSb (AlSb:Zn) thin films: One is to make P-type AlSb and the other is to find a way to suppress the deliquescence of AlSb. The AlSb:Zn thin films were prepared on glass substrates at different substrate temperatures by using the pulsed laser deposition (PLD) method. The structural, surface morphological, optical, and electrical properties of AlSb:Zn films were investigated. The crystallization of AlSb:Zn thin films was enhanced and the electrical resistivity decreased as the substrate temperature increased. The scanning electron microscopy (SEM) images indicated that the grain sizes became bigger as the substrate temperatures increased. The Raman vibration mode AlSb:Zn films were located at ~107 and ~142 cm−1 and the intensity of Raman peaks was stronger at higher substrate temperatures. In the experiment, a reduced band gap (1.4 eV) of the AlSb:Zn thin film was observed compared to the undoped AlSb films, which were more suitable for thin-film solar cells. Zn doping could reduce the deliquescent speed of AlSb thin films. The fabricated heterojunction device showed the good rectification behavior, which indicated the PN junction formation. The obvious photovoltaic effect has been observed in an FTO/ZnS/AlSb:Zn/Au device.


2011 ◽  
Vol 35 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Fatema Rezwana Chowdhury ◽  
Shamima Choudhury ◽  
Firoz Hasan ◽  
Tahmina Begum

Thin films of Tin Oxide (SnO2), having thickness of 200 nm, were formed on to glass substrates by thermal evaporation of high-purity SnO2 powder in vacuum at various substrate temperatures (TS), ranging between 25 and 200°C. SnO2 films with varying thickness were also prepared for a fixed TS = 100°C. Further, doping of SnO2 films with Indium (In) was accomplished through solid state diffusion process by successive deposition of SnO2 and In films and subsequent annealing at 200°C for 10 minutes. Both undoped and doped films were characterized optically by UV-VIS-NIR spectrophotometry in the photon wavelength ranging from 300 to 2500 nm. In the visible photon wavelength range, the average optical transmittance (T%) of the films with varying TS was found to be 85%. The maximum value of T % was found to be 89 % around the wavelength of 700nm. The variation of absorption coefficient with photon energy in the fundamental absorption region is the steepest for TS = 100°C. The sub-band gap (SBG) absorption is also minimum for this Ts. A fluctuating behavior of the band gap energy (Eg) with Ts is observed attaining the highest value of 3.59 eV for Ts = 100°C. The band gap energy increases with thickness but T% in the visible range decreases. The T% in the visible range varies inversely with indium doping, being highest for undoped films. The Eg increases upto 2 wt% In doping and gradually decreases for enhanced doping. It seems reasonable to conclude that In doping does not bring favorable optical characteristics. Undoped SnO2 films having thickness of 200 nm and formed at substrate temperature of 100°C yield essential acceptable properties for photovoltaic applications.DOI: http://dx.doi.org/10.3329/jbas.v35i1.7975Journal of Bangladesh Academy of Sciences, Vol.35, No.1, 99-111, 2011


2011 ◽  
Vol 383-390 ◽  
pp. 6289-6292
Author(s):  
Jian Ting He ◽  
Bo Xue Tan ◽  
Qin Qin Wei ◽  
Yuan Bin Su ◽  
Shu Lian Yang

ZnO thin films were deposited on n-Si (111) substrates at various oxygen partial pressures by pulsed laser deposition (PLD). X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to analyze the influence of the oxygen partial pressure on the crystallization and morphology of the ZnO thin films. An optimal crystallized ZnO thin film was observed at the oxygen partial pressure of 6.5Pa. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface components and distribution status of various elments in ZnO thin films. It was found that ZnO thin films were grown in Zn-rich state.


2016 ◽  
Vol 30 (31) ◽  
pp. 1650371 ◽  
Author(s):  
M. A. Grado-Caffaro ◽  
M. Grado-Caffaro

With the aim of providing an analytical approach (not accurate numerical results), for the first time, the sensitivity to the partial pressure of oxygen of the shift in the energy band gap experienced by cadmium-oxide thin films is evaluated for the visible region by introducing a suitable parameter. The sensitivity to the above pressure of the spatial carrier density is determined and compared with the sensitivity relative to the band gap shift. The gradient of the CdO carrier concentration as a function of the partial pressure of oxygen appears in the expressions for the two above sensitivity functions but the goal of this paper is not computing numerically this gradient so only qualitative estimations are done. In relation to the above results, the kinetics relative to the formation of CdO thin films are investigated. In addition, the sensitivity to the pressure in question of the corresponding optical-absorption shift in the visible range is calculated.


2000 ◽  
Vol 656 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
J. D. Demaree ◽  
Steven H. Mcknight

ABSTRACTBarium strontium titanate (BSTO) films were synthesized by the pulsed laser deposition technique (PLD) on silicon substrates at room temperature. The thin films were synthesized at ambient temperature and 30 mT oxygen partial pressure, with 300, 400 and 500 mJ/cm2 laser fluence at 5, 10 and 20 pulses per second on silicon wafer substrates. All films were subsequently post-annealed at 750°C in a continuous oxygen stream. The microstructure, crystallinity and lattice constant of the BSTO films were studied with the aid of atomic force microscopy (FEM) and Glancing Angle X-ray Diffraction analysis (GAXRD). The hardness and modulus of elasticity of the films were studied with the aid of a nanohardness indenter. The film stoichiometry was determined with the aid of Rutherford Backscattering Spectrometry (RBS). The results of this research will be combined with the results of our previous work [1, 2] on the effect of substrate temperature and oxygen partial pressure on the microstructure and properties of the BSTO films in order to construct a structural zone model (SZM) of the BSTO films synthesized by PLD.


2003 ◽  
Vol 18 (8) ◽  
pp. 1753-1756 ◽  
Author(s):  
Woong Choi ◽  
Tim Sands

The effect of oxygen partial pressure on the preferred orientation of CeO2 thin films was investigated by depositing CeO2 thin films and Pb(Zr, Ti)O3/CeO2 multilayers on Si (100) substrates by pulsed laser deposition. CeO2 thin films exhibited random polycrystalline grain structures at high oxygen partial pressure (≥40 mtorr), a result that is contrary to previous reports. The relationship of the preferred orientations observed between Pb(Zr, Ti)O3 films and the CeO2 layer underneath confirmed that random polycrystalline CeO2 was obtained at high oxygen partial pressure. It was suggested that x-ray diffraction data in previous reports might have been misinterpreted.


2000 ◽  
Vol 655 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
J. D. Demaree ◽  
Steven H. McKnight

AbstractBarium strontium titanate (BSTO) films were synthesized by the pulsed laser deposition technique (PLD) on silicon substrates at room temperature. The thin films were synthesized at ambient temperature and 30 mT oxygen partial pressure, with 300, 400 and 500 mJ/cm2 laser fluence at 5, 10 and 20 pulses per second on silicon wafer substrates. All films were subsequently post-annealed at 750°C in an continuous oxygen stream. The microstructure, crystallinity and lattice constant of the BSTO films were studied with the aid of atomic force microscopy (FEM) and Glancing Angle X-ray Diffraction analysis (GAXRD). The hardness and modulus of elasticity of the films were studied with the aid of a nanohardness indenter. The film stoichiometry was determined with the aid of Rutherford Backscattering Spectrometry (RBS). The results of this research will be combined with the results of our previous work [1, 2] on the effect of substrate temperature and oxygen partial pressure on the microstructure and properties of the BSTO films in order to construct a structural zone model (SZM) of the BSTO films synthesized by PLD.


Sign in / Sign up

Export Citation Format

Share Document