Micro/Nano Surface Texturing in Si Using UV Femtosecond Laser Pulses

2014 ◽  
Vol 792 ◽  
pp. 39-46
Author(s):  
K. Al Naimee ◽  
P.J. Scully ◽  
S.F. Abdalah ◽  
S. Liang ◽  
R. Meucci ◽  
...  

A fast laser texturing technique has been utilized to produce micro/nanosurface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.

2010 ◽  
Vol 670 ◽  
pp. 118-121 ◽  
Author(s):  
A.M. Taleb ◽  
K.A. Al-Naimee ◽  
S.F. Abdalah ◽  
Riccardo Meucci ◽  
F.T. Arecchi

The experimental evidence of the effect of femtosecond laser pulses on the spectral response of a Silicon photovoltaic cell is demonstrated and investigated. The response of this device is covering the visible to near infrared spectral region. The responsivity of the photovoltaic cell is enhanced from 0.18A/W (0.5A/W to 0.85 A/W) to 0.25A/W, this means that the conversion efficiency increases from about 9% to about 14% due to irradiation effect. All treatments and measurements have been done at room temperature. The observed enhancement is related to the appearing of nano-structured groves in the 700-900 nm range.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 419
Author(s):  
Junyi Nan ◽  
Min Li ◽  
Ling Zhang ◽  
Shuai Yuan ◽  
Boqu He ◽  
...  

Efficient terahertz and photoelectron emission were observed from nano-porous gold (NPG) films deposited on an intrinsic gallium arsenide (GaAs) semiconductor substrate stimulated by femtosecond laser with pulse width of 60 fs. Time-domain THz emission and reflection spectroscopy confirmed that the free charges accelerated by irradiated femtosecond laser pulses transferred from the NPG films into the GaAs substrates. Accordingly, charges accumulation was reduced in the NPG films, resulting in a stronger emission of THz pulse than that from NPG films deposited on SiO2 substrate. Charges injected into the GaAs substrate enforced an observable decrease of the THz refractive index proportional to the intensity of incident light. In comparison, for NPG deposited on glass substrates, laser induced free charges were accumulated in the NPG films, and femtosecond laser pulses irradiating on the NPG films made no changes of the THz refractive index of the glass substrates.


2011 ◽  
Vol 1365 ◽  
Author(s):  
Alan J. Hunt

ABSTRACTClassically, the limit for optical machining is on the order of the wavelength of the incident light. However, by taking advantage of precise, nonlinear damage mechanisms that occur for femtosecond laser pulses, damage can be achieved on a scale an order of magnitude lower, allowing precise removal of very small amounts of material to produce holes mere tens of nanometers wide. Femtosecond laser nanomachining can be carried out in a variety of dielectrics, and in transparent substrates machining can be sub-surface, in contrast to other nanomachining techniques such as using an electron beam or focused ion beam. We focus on the use of glass, as it is in many ways an ideal material for use in biological applications due to its chemical, optical, electrical and mechanical properties. By precisely placing laser pulses in glass, three dimensional nano and microfluidic channels and devices can be formed including nozzles, mixers, and separation columns. Recent advances in this technique allow the formation of high aspect ratio nanochannels from single pulses, thus helping address the fabrication speed limitations presented by serial processing. These nanochannels have a range of applications including the fabrication of nanoscale pores and nanowells that may serve as vias between fluidic channels, or from channels to a surface. These nanochannels have applications as a standalone technique for fabrication of nanopores and nanowells, but can also complement other fabrication techniques by allowing precisely placed jumpers that can connect channels that are out of plane. We discuss applications for diagnostic microfluidic devices, and basic cell biology research.


2003 ◽  
Vol 780 ◽  
Author(s):  
R. Houbertz ◽  
J. Schulz ◽  
L. Fröhlich ◽  
G. Domann ◽  
M. Popall ◽  
...  

AbstractReal 3-D sub-νm lithography was performed with two-photon polymerization (2PP) using inorganic-organic hybrid polymer (ORMOCER®) resins. The hybrid polymers were synthesized by hydrolysis/polycondensation reactions (modified sol-gel synthesis) which allows one to tailor their material properties towards the respective applications, i.e., dielectrics, optics or passivation. Due to their photosensitive organic functionalities, ORMOCER®s can be patterned by conventional photo-lithography as well as by femtosecond laser pulses at 780 nm. This results in polymerized (solid) structures where the non-polymerized parts can be removed by conventional developers.ORMOCER® structures as small as 200 nm or even below were generated by 2PP of the resins using femtosecond laser pulses. It is demonstrated that ORMOCER®s have the potential to be used in components or devices built up by nm-scale structures such as, e.g., photonic crystals. Aspects of the materials in conjunction to the applied technology are discussed.


Author(s):  
K. H. Leong ◽  
T. Y. Plew ◽  
R. L. Maynard ◽  
A. A. Said ◽  
L. A. Walker

Sign in / Sign up

Export Citation Format

Share Document