Tensile Properties and Hot-Tearing Tendencies of 3xxx Alloys

2014 ◽  
Vol 794-796 ◽  
pp. 95-100 ◽  
Author(s):  
Arne Nordmark ◽  
Kjerstin Ellingsen ◽  
Anders U. Johansson ◽  
Mohammed M'Hamdi ◽  
Anne Kvithyld ◽  
...  

A set-up for tensile testing in the mushy zone allowing for studies of semi-solid mechanical behavior is available at SINTEF. A hot-tearing experimental set-up has recently been developed allowing for investigation of the hot-tearing susceptibility of industrial aluminium alloys and effects of e.g. alloying composition and grain-refiner. Load and temperature are registered during constrained solidification giving information on the mechanical behavior of the alloy during solidification. Two crack-prone alloys in the 3xxx-series (A and B) have been investigated using both techniques and the results analyzed using information about solidification path from a thermo-physical model. Alloy B is found to be mechanically weaker in the interval most susceptible to hot-tearing in agreement with cast-house experience. This study shows that the experimental techniques combined with thermo-physical modeling and characterization allow for a better understanding of the hot-tearing sensitivity of the alloys. 

2006 ◽  
Vol 519-521 ◽  
pp. 1675-1680 ◽  
Author(s):  
Mark Easton ◽  
John F. Grandfield ◽  
David H. StJohn ◽  
Barbara Rinderer

Using modifications to the Rappaz-Drezet-Gremaud hot tearing model, and using empirical equations developed for grain size and dendrite arm spacing (DAS) on the addition of grain refiner for a range of cooling rates, the effect of grain refinement and cooling rate on hot tearing susceptibility has been analysed. It was found that grain refinement decreased the grain size and made the grain morphology more globular. Therefore refining the grain size of an equiaxed dendritic grain decreased the hot tearing susceptibility. However, when the alloy was grain refined such that globular grain morphologies where obtained, further grain refinement increased the hot tearing susceptibility. Increasing the cooling decreased the grain size and made the grain morphology more dendritic and therefore increased the likelihood of hot tearing. The effect was particularly strong for equiaxed dendritic grain morphologies; hence grain refinement is increasingly important at high cooling rates to obtain more globular grain morphologies to reduce the hot tearing susceptibility.


2009 ◽  
Vol 630 ◽  
pp. 213-221 ◽  
Author(s):  
Mark Easton ◽  
David H. StJohn ◽  
Lisa Sweet

Grain refinement and hot tearing are important key factors affecting the quality of castings. There have been substantial advances in the understanding of both of these phenomena over the last two decades. The paper discusses strategies for obtaining the lowest cost grain refiner addition and provides an explanation for how the refinement of equiaxed grains leads to a reduction in hot tear susceptibility. However, it also provides a warning that adding more grain refiner may not be better for reducing hot tear susceptibility. Alloy factors affecting hot tearing are also discussed. Finally, a list of six key considerations is provided to help casthouse and foundry engineers when trying to optimise grain refinement and reduce hot tearing.


2021 ◽  
Author(s):  
Abdallah Elsayed

For the A1-5Ti-1B grain refiner, the addition of 0.1 wt.% provided a 68 % reduction in grain size as compared to the unrefined AZ91E alloy at a holding time of five minutes. Grain growth restriction by TiB₂ particles was the source of grain refinement. With the addition of A1-5Ti-1B, only a small reduction in hot tearing susceptibility ws observed because large TiA1₃ particles bonded poorly with the eutectic and blocked feeding channels.The addition of 1.0 wt.% A1-1Ti-3B provided a grain size reduction of 63% as compared to the unrefined AZ91E alloy at a holding time of five minutes. The grain refinement with A1-1Ti-3B addition was attributed to a combination of TiB₂ grain growth restriction and A1B₂ nucleating sites. A significant reduction in hot tearing susceptibility was observed with A1-1Ti-3B addition as a result of a higher cooling rate and shorter local soldification time as compared to the AZ91E alloy. The reduction in hot tearing susceptibility was attributed to the good interface between eutectic and TiB₂ particles. Both grain refiners demonstrated a good resistance to fading during the holding times investigated. In addition, the AZ91E + A1-5Ti-1B and AZ91E + A1-1Ti-3B castings showed much fewer dislocation networks as compared to the untreated AZ91E casting.The development of efficient A1-Ti-B refiners can also improve castability of magnesium alloys. In addition, the fade resistant A1-Ti-B grain refiners can reduce operating costs and maintain productivity on the foundry floor. Thus, magnesium alloy with A1-Ti-B treatment have the potential for more demanding structural applications in the automobile and aerospace industries. Vehicle weight in the aerospace and automotive industries directly impacts carbon emissions and fuel efficiency. An increase in the use of lightweight materials for structural applications will result in lighter vehicles. Low density materials, such as magnesium (1.74 g/cm³) are a potential alternative to aluminium (2.70 g/cm³), to reduce component weight in structural applications.However, current magnesium alloys still do not have adequate mechanical properties and castability to meet the performance specifications of the automotive and aerospace industries. Grain refinement can significantly improve mechanical properties and reduce hot tearing during permanent mould casting. Recently, Al-Ti-B based grain refiners have shown potential in grain refining magnesium-aluminum alloys such as AZ91E. This study investigates the grain refining efficiency and fading of A1-5Ti-1B and A1-1Ti-3B in AZ91E magnesium alloy and their subsequent effect on hot tearing.The grain refiners were added at 0.1, 0.2, 0.5 and 1.0 wt.% levels. For the grain refinement and fading experiments, the castings were prepared using graphite moulds with holding times of 5, 10 and 20 minutes. For the hot tearing experiments, castings were produced representing the optimal addition level of each grain refiner. The castings were prepared using a permanent mould with pouring and mould temperatures of 720 and 180 ºC, respectively. The castings were characterized using SEM, TEM, optical microscopy and thermal analysis.


2019 ◽  
Vol 285 ◽  
pp. 311-317 ◽  
Author(s):  
Jun Zhen Gao ◽  
Qiang Zhu ◽  
Da Quan Li ◽  
Xiao Gang Hu ◽  
Min Luo ◽  
...  

A201 alloy is the strongest cast aluminum alloy, but it is considered one of the most difficult aluminum alloys to cast due to its susceptibility to hot tearing during solidification. Semi-solid casting, which characterizes fine near-globular or non-dendritic grains and relatively narrow solidification range, is potential to reduce hot cracking tendency of alloys. In this present work, semi-solid slurries of A201 alloy were prepared using Swirled Enthalpy Equilibrium Device (SEED) technique and then injected into a self-designed high pressure hot tearing mold. The microstructures of A201 semi-solid slurries with different pouring temperatures were examined. Effects of different casting pressures on the hot tearing sensitivity of A201 have been investigated. This study finds that SEED is capable of producing satisfying A201 semi-solid slurries. Lower pouring temperatures produce A201 semi-solid slurries with finer and rounder grains as well as more uniform microstructure distribution. Increasing the intensification pressure significantly decreases the hot treating tendency of A201 alloy. When the pressure reaches to 90 MPa and the mold temperature of about 250 °C, the hot tearing susceptibility (HTS) index value is nearly zero, which means almost no surface cracks are found in the semi-solid A201 die casting parts.


2006 ◽  
Vol 519-521 ◽  
pp. 1681-1686 ◽  
Author(s):  
Dmitry G. Eskin ◽  
Laurens Katgerman

Aluminium alloys during solidification change their density. This process can be conditionally divided into two stages: solidification shrinkage due to the density difference between liquid and solid phases and thermal contraction due to the temperature dependence of the solid density. Solidification shrinkage is the main cause of porosity in castings and also plays an essential role in the development of macrosegregation, whereas thermal contraction is important for the development of hot and cold cracks and is responsible for shape distortions during casting. An experimental technique has been developed and applied to binary Al–Cu alloys in order to quantify the thermal contraction in the solidification range and at subsolidus temperatures. It is shown that thermal contraction of aluminium alloys starts at rather high fractions of solid, between 80 and 95%. The experimentally determined temperature of contraction onset agrees well with the temperature at which the mushy material acquires the ability to transfer stresses. The magnitude of contraction accumulated in the solidification range corresponds well to hot tearing susceptibility of the alloy. Factors that decrease the temperature of contraction onset and the magnitude of contraction, e.g. grain refinement, are also known to decrease hot tearing. The data on the temperature at which the thermal contraction starts, on the magnitude of the contraction, and on the thermal contraction coefficient are used to model hot tearing and shape distortions during casting.


2017 ◽  
Vol 62 (1) ◽  
pp. 345-349
Author(s):  
M. Brůna

Abstract This paper focuses on developing an advanced test method and its use to study hot tearing defects in aluminium alloy castings. The paper consists of two parts. The first part introduces the reader to hot tearing in general, and provides theoretical analysis of the hot tearing phenomenon. The second part describes a newly developed method for assessing hot tearing susceptibility, and also gives the results on hot tearing for various aluminium alloys. During the test, the effect of alloy chemical composition on hot tearing susceptibility was analyzed. Three different Al-based alloys with varying Si, Cu and Ti contents were examined. Conclusions deal with the effect of individual elements on hot tearing susceptibility, and confirm that the main objective was achieved and the proposed method proves to be repeatable and reliable.


2006 ◽  
Vol 116-117 ◽  
pp. 76-79 ◽  
Author(s):  
J. Wannasin ◽  
David Schwam ◽  
J.A. Yurko ◽  
C. Rohloff ◽  
G. Woycik

Aluminum-copper alloys offer both high strength and excellent ductility suitable for a number of automotive applications to reduce vehicle weight; however, the alloys are difficult to cast because of their tendency for hot tearing. In this work, semi-solid gravity casting of an aluminum-copper alloy, B206, was conducted in constrained rod casting molds to study the feasibility of using the process to reduce or eliminate hot tearing. To demonstrate the feasibility of gravity casting of the metal slurries, a fluidity test was also conducted. Results show that the hot tearing susceptibility of the aluminum-copper B206 alloy cast in semi-solid state is lower than those cast in liquid state with high superheat temperatures. The grain size of the semi-solid cast Al-Cu samples appears to be finer than those cast in liquid state with high superheat temperatures. In addition, the metal slurries had sufficient fluidity to fill the molds even with low gravity pressures. The results suggest that semi-solid gravity casting is a feasible process to help reduce hot tearing.


Sign in / Sign up

Export Citation Format

Share Document