Research on the Floating Motion Platform for Detecting Surface Defects in KDP Crystal

2014 ◽  
Vol 800-801 ◽  
pp. 537-542
Author(s):  
Ming Jun Chen ◽  
Wen Ming Zhang ◽  
Ran Liao ◽  
Yong Xiao

The ultra-precision floating motion platform is the key device for equipment detectingand processing optical elements, and this paper mainly studies the floating motion platform used fordetecting the surface detects in KDP crystal. The load capacity of air cushion supporting the floatingmotion platform is studied theoretically and experimentally, and finally the supply pressure of thefour air cushions were optimized under the guidance of its load characteristic curve. The structureparameter of plane flexure hinge, a key part of floating motion platform, is optimized and thesimulation results show that the optimized plane flexure hinge can eliminate the disturbance inZ-direction obviously, which is produced by the two motors. Finally the support position of crystalholder is optimized by means of static and modal analysis; and the set of optimized support way canmake the maximum deformation of the platform reducing by 2μm and make the 1st order naturalfrequency increase from 49.078Hz to 51.787Hz.

2012 ◽  
Vol 497 ◽  
pp. 165-169 ◽  
Author(s):  
He Ping Zhang ◽  
Dong Ming Guo ◽  
Xu Wang ◽  
Hang Gao

Although Single Point Diamond Turning (SPDT) can do pretty well in optical surfacing of large scale KDP crystal, both the surface accuracy and integrity are considerably high; meanwhile as the defects of micro-waveness and stress are inevitable, the laser-induced damage threshold of KDP optical elements after SPDT still cannot be satisfied. Because of the characters of deliquescent and water-soluble, the process of computer controlled Micro-nano deliquescence is attempted to remove the residual micro-waveness on KDP surface after SPDT. Based on the assumption of Preston and the characters of Micro-nano deliquescence, the model of material removal ratio is suggested, the dwell time for ascertained KDP surface is solved, the processing of computer controlled Micro-nano deliquescence is simulated and the processed surface condition on theory is obtained. Besides, the influences of different parameters on the surfacing efficiency and accuracy are analyzed. Finally, three polishing tracks are comparatively analyzed. The simulation results are quite important in guiding the experimental polishing of large scale KDP by computer controlled Micro-nano deliquescence


2021 ◽  
Author(s):  
Haotian Wang ◽  
Chaoming Li ◽  
Xinrong Chen ◽  
Zhe Huang ◽  
Jiayao Pan ◽  
...  

2017 ◽  
Vol 25 (3) ◽  
pp. 576-583
Author(s):  
陈 竹 CHEN Zhu ◽  
姜宏振 JIANG Hong-zhen ◽  
刘 旭 LIU Xu ◽  
陈 波 CHEN Bo

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 765
Author(s):  
Junhui Zhu ◽  
Peng Pan ◽  
Yong Wang ◽  
Sen Gu ◽  
Rongan Zhai ◽  
...  

The piezoelectrically-actuated stick-slip nanopositioning stage (PASSNS) has been applied extensively, and many designs of PASSNSs have been developed. The friction force between the stick-slip surfaces plays a critical role in successful movement of the stage, which influences the load capacity, dynamic performance, and positioning accuracy of the PASSNS. Toward solving the influence problems of friction force, this paper presents a novel stick-slip nanopositioning stage where the flexure hinge-based friction force adjusting unit was employed. Numerical analysis was conducted to estimate the static performance of the stage, a dynamic model was established, and simulation analysis was performed to study the dynamic performance of the stage. Further, a prototype was manufactured and a series of experiments were carried out to test the performance of the stage. The results show that the maximum forward and backward movement speeds of the stage are 1 and 0.7 mm/s, respectively, and the minimum forward and backward step displacements are approximately 11 and 12 nm, respectively. Compared to the step displacement under no working load, the forward and backward step displacements only increase by 6% and 8% with a working load of 20 g, respectively. And the load capacity of the PASSNS in the vertical direction is about 72 g. The experimental results confirm the feasibility of the proposed stage, and high accuracy, high speed, and good robustness to varying loads were achieved. These results demonstrate the great potential of the developed stage in many nanopositioning applications.


2005 ◽  
Vol 291-292 ◽  
pp. 365-370 ◽  
Author(s):  
Wei Min Lin ◽  
Hitoshi Ohmori ◽  
T. Suzuki ◽  
Yoshihiro Uehara ◽  
Shinya MORITA

This paper describes an ultra precision polishing method of aspherical mirrors, and the fundamental research on polishing characteristics. The aspherical mirrors with a diameter of about 30mm made by fused silica glass and CVD-SiC were ELID (electrolytic in-process dressing)-ground to high form accuracy with #4000 cast iron bonded diamond wheel, and then polished with a small polishing tool. As the result, final surface roughness of 1.4nmRa and form accuracy of 1.2 μm was obtained.


2018 ◽  
Vol 57 (10) ◽  
pp. 2638 ◽  
Author(s):  
Shengfei Wang ◽  
Jian Wang ◽  
Qiao Xu ◽  
Xiangyang Lei ◽  
Zhichao Liu ◽  
...  

2019 ◽  
Vol 40 (6) ◽  
pp. 1167-1173
Author(s):  
WANG Guilin ◽  
ZHU Junhui ◽  
LI Jiaxiang ◽  
LI Zhibin

Sign in / Sign up

Export Citation Format

Share Document