Evaluation of the Hydrophobicity on Silicon Rubber Coating with Loads of Alumina Trihydrate and Nanosilica for Use in Electrical Insulation Coatings

2015 ◽  
Vol 820 ◽  
pp. 405-410
Author(s):  
Daniella Cibele Bezerra ◽  
Ignat Pérez Almirall ◽  
Edson Guedes da Costa ◽  
Ana Cristina Figueiredo de Melo Costa ◽  
Edcleide Maria Araújo

This study aims to evaluate the hydrophobicity of vulcanized silicone rubber coatings at room temperature (RTV SR) with loads of alumina trihydrate (ATH) and nanosilica (NS) in the polymeric silicone rubber matrix, in order to obtain coatings ATH/NS/RTV SR to cover the surface of glass electrical insulators. The coatings were characterized by scanning electron microscopy (SEM), testing in salt spray chamber, loss test and recovery of hydrophobicity. These coatings showed varying sizes of agglomerates and heterogeneous distribution of particles within the matrix RTV SR. In the test in salt spray chamber smaller leakage current values was observed for the insulator coating with the ATH/NS loads. In the loss and recovery of the hydrophobicity test the best result was observed for insulating load RTV SR / 20: 1 (ATH: NS).

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3784
Author(s):  
Xiaobo Meng ◽  
Liming Wang ◽  
Hongwei Mei ◽  
Chuyan Zhang

A pollution flashover along an insulation surface—a catastrophic accident in electrical power system—threatens the safe and reliable operation of a power grid. Silicone rubber coatings are applied to the surfaces of other insulation materials in order to improve the pollution flashover voltage of the insulation structure. It is generally believed that the hydrophobicity of the silicone rubber coating is key to blocking the physical process of pollution flashover, which prevents the formation of continuously wet pollution areas. However, it is unclear whether silicone rubber coating can suppress the generation of pre-discharges such as corona discharge and streamer discharge. In this research, the influence of silicone rubber coating on the characteristics of surface streamer discharge was researched in-depth. The streamer ‘stability’ propagation fields of the polymer are lower than that of the polymer with silicone rubber coating. The velocities of the streamer propagation along the polymer are higher than those along the polymer with silicone rubber coating. This indicates that the surface properties of the polymer with the silicone rubber coating are less favorable for streamer propagation than those of the polymer.


1997 ◽  
Vol 13 (Supplement) ◽  
pp. 289-294 ◽  
Author(s):  
Hyun Jung Lee ◽  
Hyun Joon Oh ◽  
Gang Cui ◽  
Geun Sig Cha ◽  
Hakhyun Nam

Author(s):  
Erol Sancaktar ◽  
Xiaoxiao Liu

Abstract Former investigators observed characteristic laser-induced structure on synthetic fibers and steel cord surfaces after irradiation, which is considered by us as an advantageous factor in developing bonding strength of fiber-elastomer composites. We applied various UV laser treatments on the surfaces of steel fiber in order to obtain similar topographic features. Surface modification was observed under scanning electron microscope (SEM). In consideration as factors in bonding strength, mechanical properties of the matrix elastomer (silicon rubber) had been tested in addition to its thermal properties by differential scanning calorimetry (DSC) and Carbon Black (CB) filler dispersion properties by atomic force microscopy (AFM). As the main test for adhesion strength, we performed a fiber pull-out test method developed by our research group for bonding strength of cord fibers to silicon rubber in both neat and CB filled forms for comparison purposes. Our experiment results revealed better adhesion strength when using silicone rubber matrix reinforced with CB.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3024
Author(s):  
M. Hassan Raza ◽  
Abraiz Khattak ◽  
Asghar Ali ◽  
Safi Ullah Butt ◽  
Bilal Iqbal ◽  
...  

Degradation of silicon rubber due to heat and humidity affect its performance in outdoor applications. To analyze the effects of high temperature and humidity on room temperature vulcanized (RTV) silicone rubber (SiR) and its composites, this study was performed. Five different sample compositions including neat silicone rubber (nSiR), microcomposites (15 wt% silica(SMC 15% SiO2) and 15 wt% ATH(SMC 15% ATH), nanocomposite (2.5 wt% silica(SNC 2.5% SiO2) and hybrid composite (10 wt% micro alumina trihydrate with 2 wt% nano silica(SMNC 10% ATH 2% SiO2) were prepared and subjected to 70 ˚C temperature and 80% relative humidity in an environmental chamber for 120 h. Contact angle, optical microscopy and Fourier transform infrared (FTIR) spectroscopy were employed to analyze the recovery properties before and after applying stresses. Different trends of degradation and recovery were observed for different concentrations of composites. Addition of fillers improved the overall performance of composites and SMC 15% ATH composite performed better than other composites. For high temperature and humidity, the ATH-based microcomposite was recommended over silica due to its superior thermal retardation properties of ATH. It has been proved that ATH filler is able to withstand high temperature and humidity.


2012 ◽  
Vol 706-709 ◽  
pp. 2546-2551 ◽  
Author(s):  
Gelareh Momen ◽  
Masoud Farzaneh

A superhydrophobic surface was elaborated using two inexpensive industrial processes: surface anodization in phosphoric acid and spin coating of the anodized surface by RTV silicone rubber. Scanning electron microscopy (SEM), atomic force microscopic (AFM) and water contact angle measurements have been performed to characterize the morphological features, and wettability of the surfaces. The water static contact angle of the elaborated surface reached 157 ° at room temperature. At supercool temperature (-10°C) the superhydrophobic coating showed an important delayed freezing time.


Sign in / Sign up

Export Citation Format

Share Document