Ab Initio Calculations of Absolute Surface Energies of Clean and Hydrogen Covered 3C-SiC(001), (110) and (111) Surfaces

2015 ◽  
Vol 821-823 ◽  
pp. 363-366 ◽  
Author(s):  
Sergey N. Filimonov

The absolute surface energies of three major low index surfaces of cubic silicon carbide (3C-SiC) are determined by first-principles density functional theory calculations. Calculations show that among clean 3C-SiC surfaces the Si-terminated 3C-SiC(001)-(3x2) surface has the lowest energy. The second and third lowest energy surfaces are the Si-terminated 3C-SiC(111)-(√3x√3) surface and the nonreconstructed 3C-SiC(110) surface. Hydrogen passivation greatly reduces both the absolute surface energies of the low index 3C-SiC surfaces and the surface energy anisotropy. In particular, the surface energies of fully passivated 3C-SiC(110) and (111) surfaces become indistinguishable at hydrogen-rich deposition conditions.

2014 ◽  
Vol 626 ◽  
pp. 46-49 ◽  
Author(s):  
Yusuke Kinoshita ◽  
Nobutada Ohno

The generalized stacking fault (GSF) energy surfaces of (110), (101), (121), (001), and(100) planes in -Sn are analyzed using first-principles density functional theory calculations. Fromthe minimum energy paths (MEPs) on the GSF energy surfaces analyzed, energetically preferableslip paths of 13 nonequivalent slip systems in -Sn are investigated. It is found that the MEP of(110)[111]/2, (101)[010], (101)[111]/2, (121)[101], and (121)[111]/2 deviates from the straight linepath and takes a curve line path. The results indicate that perfect dislocations on these five slip systemsdissociate into partial dislocations as in cubic and hexagonal crystals.


2016 ◽  
Vol 4 (29) ◽  
pp. 11498-11506 ◽  
Author(s):  
Taehun Lee ◽  
Yonghyuk Lee ◽  
Woosun Jang ◽  
Aloysius Soon

Using first-principles density-functional theory calculations, we investigate the advantage of using h-WO3 (and its surfaces) over the larger band gap γ-WO3 phase for the anode in water splitting. We demonstrate that h-WO3 is a good alternative anode material for optimal water splitting efficiencies.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2001 ◽  
Vol 670 ◽  
Author(s):  
Michael Haverty ◽  
Atsushi Kawamoto ◽  
Gyuchang Jun ◽  
Kyeongjae Cho ◽  
Robert Dutton

ABSTRACTBulk Density Functional Theory calculations were performed on Hf and Zr substitutions for Al in κ-alumina. The lowest energy configuration found was an octahedrally coordinated Zr site. Zr dissolution was favorable with an enthalpy of -2eV/unit cell for forming Al1.875Zr0.125O3 from pure Zr and κ-alumina. Hf and Zr substitution for Al atoms introduced empty d-states below the conduction band edge reducing the Eg of pure κ-alumina (7.5eV) to 6.4-5.9eV. The edge of the valence band however remained fixed by the O p-state character. The substitution of Hf and Zr into the alumina structure may lead to a higher dielectric constant, but will also reduce Eg and result in a trade off in tunneling currents in devices.


2013 ◽  
Vol 205-206 ◽  
pp. 417-421
Author(s):  
Tatsunori Yamato ◽  
Koji Sueoka ◽  
Takahiro Maeta

The lowest energetic configurations of metal impurities in 4throw (Sc - Zn), 5throw (Y - Cd) and 6throw (Hf - Hg) elements in Ge crystals were determined with density functional theory calculations. It was found that the substitutional site is the lowest energetic configuration for most of the calculated metals in Ge. The most stable configurations of dopant (Ga, Sb) - metal complexes in Ge crystals were also investigated. Following results were obtained. (1) For Ga dopant, 1st neighbor T-site is the most stable for metals in group 3 to 7 elements while substitutional site next to Ga atom is the most stable for metals in group 8 to 12 elements. (2) For Sb dopant, substitutional site next to Sb atom is the most stable for all calculated metals. Binding energies of the interstitial metalMiwith the substitutional dopantDswere obtained by the calculated total energies. The calculated results for Ge were compared with those for Si.


2020 ◽  
Author(s):  
Justin S. Smith ◽  
Roman Zubatyuk ◽  
Benjamin T. Nebgen ◽  
Nicholas Lubbers ◽  
Kipton Barros ◽  
...  

<p>Maximum diversification of data is a central theme in building generalized and accurate machine learning (ML) models. In chemistry, ML has been used to develop models for predicting molecular properties, for example quantum mechanics (QM) calculated potential energy surfaces and atomic charge models. The ANI-1x and ANI-1ccx ML-based eneral-purpose potentials for organic molecules were developed through active learning; an automated data diversification process. Here, we describe the ANI-1x and ANI-1ccx data sets. To demonstrate data set diversity, we visualize them with a dimensionality reduction scheme, and contrast against existing data sets. The ANI-1x data set contains multiple QM properties from 5M density functional theory calculations, while the ANI-1ccx data set contains 500k data points obtained with an accurate CCSD(T)/CBS extrapolation. Approximately 14 million CPU core-hours were expended to generate this data. Multiple QM properties from density functional theory and coupled cluster are provided: energies, atomic forces, multipole moments, atomic charges, and more. We provide this data to the community to aid research and development of ML models for chemistry.</p>


Author(s):  
Javaria Batool ◽  
Syed Muhammad Alay-e-Abbas ◽  
Gustav Johansson ◽  
Waqas Zulfiqar ◽  
Muhammad Arsam Danish ◽  
...  

The thermodynamic, structural, magnetic and electronic properties of pristine and intrinsic vacancy defect containing topological Dirac semimetal Ba3SnO are studied using first-principles density functional theory calculations. The thermodynamic stability of...


2019 ◽  
Vol 7 (39) ◽  
pp. 12306-12311 ◽  
Author(s):  
He-Ping Su ◽  
Shu-Fang Li ◽  
Yifeng Han ◽  
Mei-Xia Wu ◽  
Churen Gui ◽  
...  

First-principles density functional theory calculations, for the first time, was used to predict the Mg3TeO6-to-perovskite type phase transition in Mn3TeO6 at around 5 GPa.


Sign in / Sign up

Export Citation Format

Share Document