Lightweight Design of the Welded Beam of Machining Center Based on Topology Optimization

2016 ◽  
Vol 836-837 ◽  
pp. 326-332
Author(s):  
Qin Sun ◽  
Zuo Li Li ◽  
Hui Yu ◽  
Yang Liu ◽  
Jin Sheng Zhang

From the perspective of statics, the deformation of welded beam under the action of gravity and cutting force was studied in the paper. During the actual machining process, vibration of welded beam and even the machine can be caused due to the change of cutting condition and interference from the outside. To avoid the natural frequency, and prevent the occurrence of resonance phenomena, welded beam modal was further analyzed; the first six natural frequencies and mode shapes of the beam were achieved. Statics and modal analysis are the basis of lightweight design of the welded beam based on topology optimization. The topology optimization model of maximum stiffness design and eigenvalue problem structural dynamics was established. Finite element model of beam and its components was established in hypermesh, and the optimization objective function, constraint function and boundary conditions were also set. Compared with the structure before optimization, the weight of the beam was reduced 10%, the lightweight design of the welded beam was achieved and the comprehensive performance of the beam was significantly improved.

2012 ◽  
Vol 226-228 ◽  
pp. 281-284
Author(s):  
Li Da Zhu ◽  
Xiao Bang Wang ◽  
Tiao Biao Yu ◽  
Wan Shan Wang

The dynamic characteristics of machine tool may directly affect its machining capability, which is analyzed to improve the machining precision and efficiency. In this paper, the 3D finite element model of main components turn-milling center is established by using ANSYS software, and then spindle box of turn-milling center is analyzed and optimized; the natural frequencies and vibration models are obtained after analysis, which guarantee the design requirement of the machining center. Therefore it is significant to improve the design quality of machining center by using FEA software in the design process.


Author(s):  
J. S. Rao ◽  
J. R. Chang ◽  
T. N. Shiau

Abstract A general finite element model is presented for determining the coupled bending-torsion natural frequencies and mode shapes of geared rotors. Uncoupled bending and torsion frequencies are obtained for examples available in literature and the present program is verified against these. The effect of the gear box is considered to determine the coupled frequencies. Parameters studied include the pressure angle, gear mesh stiffness, and bearing properties. The gear pressure angle is shown to have no effect on the natural frequencies of rotors supported on isotropic bearing supports. Several case studies with bending-torsion coupling are considered and the results obtained are compared with those available in literature. The results of a general rotor system with 8lodes are also presented.


Author(s):  
Kai Jokinen ◽  
Erno Keskinen ◽  
Marko Jorkama ◽  
Wolfgang Seemann

In roll balancing the behaviour of the roll can be studied either experimentally with trial weights or, if the roll dimensions are known, analytically by forming a model of the roll to solve response to imbalance. Essential focus in roll balancing is to find the correct amount and placing for the balancing mass or masses. If this selection is done analytically the roll model used in calculations has significant effect to the balancing result. In this paper three different analytic methods are compared. In first method the mode shapes of the roll are defined piece wisely. The roll is divided in to five parts having different cross sections, two shafts, two roll ends and a shell tube of the roll. Two boundary conditions are found for both supports of the roll and four combining equations are written to the interfaces of different roll parts. Totally 20 equations are established to solve the natural frequencies and to form the mode shapes of the non-uniform roll. In second model the flexibility of shafts and the stiffness of the roll ends are added to the support stiffness as serial springs and the roll is modelled as a one flexibly supported beam having constant cross section. Finally the responses to imbalance of previous models are compared to finite element model using beam elements. Benefits and limitations of each three model are then discussed.


Author(s):  
Youngin Choi ◽  
Seungho Lim ◽  
Kyoung-Su Park ◽  
No-Cheol Park ◽  
Young-Pil Park ◽  
...  

The System-integrated Modular Advanced ReacTor (SMART) developed by KAERI includes components like a core, steam generators, coolant pumps, and a pressurizer inside the reactor vessel. Though the integrated structure improves the safety of the reactor, it can be excited by an earthquake and pump pulsations. It is important to identify dynamic characteristics of the reactor internals considering fluid-structure interaction caused by inner coolant for preventing damage from the excitations. Thus, the finite element model is constructed to identify dynamic characteristics and natural frequencies and mode shapes are extracted from this finite element model.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042093648
Author(s):  
Liansen Sha ◽  
Andi Lin ◽  
Xinqiao Zhao ◽  
Shaolong Kuang

Topology optimization is a widely used lightweight design method for structural design of the collaborative robot. In this article, a topology optimization method for the robot lightweight design is proposed based on finite element analysis of the assembly so as to get the minimized weight and to avoid the stress analysis distortion phenomenon that compared the conventional topology optimization method by adding equivalent confining forces at the analyzed part’s boundary. For this method, the stress and deformation of the robot’s parts are calculated based on the finite element analysis of the assembly model. Then, the structure of the parts is redesigned with the goal of minimized mass and the constraint of maximum displacement of the robot’s end by topology optimization. The proposed method has the advantages of a better lightweight effect compared with the conventional one, which is demonstrated by a simple two-linkage robot lightweight design. Finally, the method is applied on a 5 degree of freedom upper-limb exoskeleton robot for lightweight design. Results show that there is a 10.4% reduction of the mass compared with the conventional method.


2002 ◽  
Vol 29 (5) ◽  
pp. 641-652 ◽  
Author(s):  
Magdy Samaan ◽  
Khaled Sennah ◽  
John B Kennedy

The type and arrangement of bearings for a bridge superstructure are important considerations in bridge design. For a curved continuous spread-box girder bridge, the support conditions for the bridge superstructure may significantly influence the distribution factors for maximum stresses, reactions, and shear forces as well as the bridge natural frequencies and mode shapes. Current design practices in North America recommend very few guidelines for bearing arrangements and types. This paper describes an extensive study carried out using an experimentally calibrated finite element model, in which curved continuous prototype bridges were analyzed to determine their structural response. Six different types and arrangements of support bearings were studied to determine their effect on the maximum stress and reaction distributions as well as on the natural frequencies of such bridges. The results were used to suggest the most favourable bearing arrangement and type.Key words: bridge bearings, composite, continuous, curved bridges, design, distribution factors, finite element, spread-box.


2016 ◽  
Vol 836-837 ◽  
pp. 522-528
Author(s):  
Yan Jun Guo

This paper resolved CNC turret punch cause vibration phenomenon in the course of processing sheet,analysis of its dynamic characteristics of the beam servo feed mechanism, using the method of constrained modal analysis.Through the establishment of finite element model exactly for the servo beam and setting the boundary elastic restraint stiffness, solving the natural frequencies and mode shapes of the servo beam under boundary constraints and loading conditions. Constraints modal analysis results are consistent with experimental monitoring results of CNC turret punch servo beam. This modeling methodology and results of the analysis has a high practical value for CNC turret punch dynamic characteristics analysis and structural optimization design.


1997 ◽  
Vol 119 (2) ◽  
pp. 145-151 ◽  
Author(s):  
M. Krawczuk ◽  
W. Ostachowicz

The paper presents a finite element model of the arch with a transverse, one-edge crack. A part of the cracked arch is modelled by a curved beam finite element with the crack. Parts of the arch without the crack are modelled by noncracked curved beam finite elements. The crack occurring in the arch is nonpropagating and open. It is assumed that the crack changes only the stiffness of the arch, whereas the mass is unchanged. The method of the formation of the stiffness matrix of a curved beam finite element with the crack is presented. The effects of the crack location and its length on the changes of the in-plane natural frequencies and mode shapes of the clamped-clamped arch are studied.


Author(s):  
Yozo Fujino ◽  
Masato Abe ◽  
Hajime Shibuya ◽  
Masato Yanagihara ◽  
Masashi Sato ◽  
...  

Forced and ambient dynamic tests of the Hakucho Bridge were carried out to study the dynamic characteristics of this suspension bridge. Dense-array measurement was employed in order to capture not only natural frequencies and damping, but also the mode shapes of the bridge. The natural frequencies and mode shapes obtained from the forced and ambient vibration tests agreed well with those calculated by a three-dimensional finite element model. A new method that combines the random decrement method with the Ibrahim time domain method is proposed to systematically identify the natural frequencies, damping, and mode shapes. This method is successfully applied to ambient vibration data. It is shown that the natural frequency of the first vertical bending mode decreases noticeably as the wind speed increases. It is also shown that the shape of the first vertical bending mode changes slightly near the towers, depending on the wind velocity; this finding indicates that the change may be associated with friction in the bearings at the towers. Finally, application of the Global Positioning System to measure static displacement of the girder is explained.


2014 ◽  
Vol 8 (1) ◽  
pp. 117-123
Author(s):  
Ke Zhang ◽  
Xuan Mu ◽  
Dehong Zhao ◽  
Yuhou Wu

Solid Isotropic Microstructure with Penalization(SIMP) in topology optimization was deeply analyzed, and thus SIMP topology optimization criteria algorithm was deduced. Simulation analysis to the results was also conducted by Ansys, so as the structural lightweight design to machine crossbeams of the HTM series gantry. By verifying, the structure was 3.8% lower than the traditional structure quality, stiffness increased by 16.07%, and the overall inherent frequency was improved. By applying topology optimization method to the design process of the machining center HTM series, ma-terial utilization is improved and production costs were reduced.


Sign in / Sign up

Export Citation Format

Share Document