Study on Process Parameters on Single Point Incremental Forming of PVC

2016 ◽  
Vol 878 ◽  
pp. 74-80 ◽  
Author(s):  
Xiao Bo Zhang ◽  
Jin Wang ◽  
Shu Qin Zhang

Effects of polyvinylchloride (PVC) sheet thickness (t), feed speed (υ), spindle speed (ω), Z-axis feed rate (p) and tool head diameter (Φ) as well as their interactions during the single point incremental forming (SPIF) on forming performance of the PVC sheet material were studied through an orthogonal experimental test. In this experiment, the angle-variable cone was used and the maximum forming limiting angle was taken as the experimental index. Results showed that and ω×Φ influence forming performance of PVC sheet material significantly. υ is the main influencing factor of SPIF performance of PVC sheet material. Small υ is good for sheet material forming. p and Φ are proportional to forming performance of sheet material. Over ω will cause material wear-out. Effect of t could be neglected.

Author(s):  
Tyler J. Grimm ◽  
Ihab Ragai ◽  
John T. Roth

Incremental forming (IF) is a sheet material forming method which utilizes a hemispherically tipped tool to form material. The tool is typically CNC controlled along a path which outlines the contours of the final geometry. The most common toolpaths used during forming are the spiral and step-down paths. Few variations of these toolpaths currently exist. A novel toolpathing strategy is proposed herein. This toolpath forms a wave-like path in order to mimic the effects of vibration-assisted tooling; however, with much greater control. A variation of this strategy in which the tool does not lose contact with the surface of the part throughout its path was tested. This method has been found to be an effective approach for improving the surface variability of the final part.


2015 ◽  
Vol 9 (1) ◽  
pp. 1025-1032
Author(s):  
Shi Pengtao ◽  
Li Yan ◽  
Yang Mingshun ◽  
Yao Zimeng

To furthermore optimize the machining parameters and improve the surface quality of the workpieces manufactured by single point incremental forming method, the formation mechanism of the sacle veins on the metal incremental froming workpieces was studied through experiment method. The influence principle of the spindle speed, the feed speed and the material of tip of tools on the length of scale veins was obtained through analyzing the experimental results and building the mathematical model among the length of scale veins were feed speed and spindle speed through measuring the roughness of surfaces and observing the appearance of the forming workpieces. The experimental results showed that, the spindle speed, the feed speed and the material of tool tips have a significant effect on the scale veins formation on the surface of forming workpieces. Therefore, an appropriate group of spindle speed and feed speed can reduce the effect of scale veins on the roughness of single point incremental forming workpieces and furthermore improve the surface quality of forming workpieces.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mingshun Yang ◽  
Zimeng Yao ◽  
Yan Li ◽  
Pengyang Li ◽  
Fengkui Cui ◽  
...  

An excessive thickness-reducing ratio of the deformation zone in single point incremental forming of the metal sheet process has an important influence on the forming limit. Prediction of the deformation zone thickness is an important approach to control the thinning ratio. Taking the 1060 aluminum as the research object, the principle of thickness deformation in the single point incremental forming process was analyzed; the finite element model was established using ABAQUS. A formula with high accuracy to predict the deformation zone thickness was fitted with the simulation results, and the influences of process parameters, such as tool diameter, step down, feeding speed, sheet thickness, and forming angle, on thinning ratio were analyzed. The accuracy of the finite element simulation was verified by experiment. A method to control the thinning rate by changing the forming trajectory was proposed. The results showed that the obtained value by using the fitted formula is closer to the experimental results than that obtained by the sine theorem. The thinning rate of the deformation zone increases with the increase of tool diameter, forming angle, and sheet thickness and decreases with the increase of step down, while the feeding speed had no significant effect on the thinning ratio. The most important factor of the thinning ratio is the forming angle, and the thinning ratio can be effectively reduced by using the forming trajectory with a uniformly distributed pressing point.


2015 ◽  
Vol 809-810 ◽  
pp. 277-282
Author(s):  
Khalil Ibrahim Abass

The Single Point Incremental Forming Process (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The forming tool is moved along the tool path while the edges of sheet material are clamped. The finished part is manufactured by the CNC machine. SPIF involves extensive plastic deformation and the description of the process is more complicated by highly nonlinear boundary conditions, namely contact and frictional effects have been accomplished. However, due to the complex nature of these models, numerical approaches dominated by the FEA are now in widespread use. The paper presents the data and main results of a study on effect of using cover blank in SPIF through FEA. The considered SPIF has been studied under certain process conditions referring to the test work piece, tool, etc., applying ANSYS 11.0. The results show that the simulation model can predict an ideal profile of processing track, spring back error of SPIF, the behavior of contact tool-work piece, the product accuracy by evaluation its thickness and strain distributions, the contact status and chattering among surface interface tool-work piece.


2015 ◽  
Vol 760 ◽  
pp. 427-432
Author(s):  
Khalil Ibrahim Abass ◽  
Florian Draganescu

The Single Point Incremental Forming Process, SPIF, is a forming technique of sheet material based on layered manufacturing principles. The forming tool is moved along the tool path while the edges of sheet material are clamped on fixture by holder. The finished part is performed by the CNC milling machine. The description of the process is more complicated by highly nonlinear boundary conditions, namely contact and frictional effects have been accomplished. Due to the fact that the mathematical analysis of SPIF is complex, numerical approaches dominated by the FEA are now in widespread use. The paper presents the data and main results of a study concerning the effect of forming tool profile on SPIF through FEA, that permits the modeling of complex geometries, material behavior and boundary conditions. SPIF has been studied under certain process conditions referring to the test workpiece, tool, etc., using ANSYS 11.0. The results showed that the model of simulation can predict an ideal profile of processing track, spring back error of SPIF, the behavior of contact tool - workpiece, the accuracy of product by evaluation the strain and the stress distributions between forming tool and workpiece surface interface, and sample of results have been demonstrated.


2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Vikas Sisodia ◽  
Shailendra Kumar

The present paper describes the experimental investigation on influence of process parameters on maximum forming force in Single Point Incremental Forming (SPIF) process using dummy sheet. Process parameters namely dummy sheet thickness, tool size, step size, wall angle and feed rate are selected. Taguchi L18 orthogonal array is used to design the experiments. From the analysis of variance (ANOVA) dummy sheet thickness, tool size, step size and wall angle are significant process parameters while feed rate is insignificant. It is found that as dummy sheet thickness, tool size, step size and wall angle increase magnitude of peak forming force increases while there is marginal decrease in forming force as feed rate increases. Predictive model is also developed for forming force. Validation tests are performed in order to check the accuracy of developed model. Optimum set of process parameters is also determined to minimize forming force. Experimental results are in good agreement with results predicted by the developed mathematical model.


2017 ◽  
Vol 890 ◽  
pp. 362-366 ◽  
Author(s):  
Amar Al-Obaidi ◽  
Verena Kräusel ◽  
Dirk Landgrebe

The strategy in manufacturing hardened parts used in car bodies is to tailor the mechanical properties. This is done by combining together a high-strength region and a high-toughness region to ensure the crash performance required. Other successive secondary operations such as trimming, joining and welding can be improved as a result of the tailoring process. In this work, the mechanical properties of 22MnB5 alloy sheet material produced by single-point incremental forming have been tailored. For this purpose, the sheets were locally heated by induction during the forming process and subsequently cooled. The sheet temperature was controlled by the CNC milling machine feed rate and induction power. As a result, the produced tailored parts consist of three different regions: ductile, transition and hardened regions. The Vickers hardness values were 583 HV1 and 175 HV1 for the hardened and ductile regions, respectively. The proposed application allows forming and quenching at the same time without transfer and to reduce the process time.


2019 ◽  
Vol 823 ◽  
pp. 1-7
Author(s):  
Ching Lun Li ◽  
Yung Kuan Ni ◽  
Yang Haw ◽  
Yuung Hwa Lu

This study involved planning different tool paths for an axisymmetric cup to explore the forming characteristics of the single point incremental forming (SPIF) process. In addition, this study developed a gradient theory to compute the inclined angle between the tangential and horizontal directions of the cup formed using single point incremental forming. The sheet thickness distribution of the cup was also calculated. To verify the theory, circle arc cups were formed by CNC machining using different tool paths. It was found that the cup formed using the spiral evolutional snail-line tool path produced a better surface than that formed using the equal height evolutional tool path. The sheet thicknesses of circle arc cups obtained by the experiment and using the cosine law were compared. A larger deviation was noted in the initial portion of the cup, whereas a smaller deviation was found in the other portion. This study also adopted a dual-conical cup to investigate the relationship between thickness and the initial inclined angle at the initial portion. It was found that a larger initial inclined angle led to good coincidence between the experimental and theoretical sheet thicknesses.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Abdulmajeed Dabwan ◽  
Adham E. Ragab ◽  
Mohamed A. Saleh ◽  
Saqib Anwar ◽  
Atef M. Ghaleb ◽  
...  

Single-point incremental forming is an innovative flexible and inexpensive technique to form sheet products when prototypes or small batches are required. The process allows complex geometries to be produced using a computer numerical control machine, eliminating the need for a special die. This study reports on the effects of four important single-point incremental forming process parameters on produced surface profile accuracies. The profile accuracy was estimated by measuring the side angle errors and surface roughness and also waviness and circularity of the product inner surface. Full factorial design of experiments was used to plan the study, and the analysis of variance was used to analyze and interpret the results. The results indicate that the tool diameter (d), step depth (s), and sheet thickness (t) have significant effects on the produced profile accuracy, while the feed rate (f) is not significant. As a general rule, thin sheets with greater tool diameters yielded the best surface quality. The results also show that controlling all surface quality features is complex because of the contradicting effects of, and interactions between, a number of the process parameters.


CIRP Annals ◽  
2004 ◽  
Vol 53 (1) ◽  
pp. 207-210 ◽  
Author(s):  
L. Fratini ◽  
G. Ambrogio ◽  
R. Di Lorenzo ◽  
L. Filice ◽  
F. Micari

Sign in / Sign up

Export Citation Format

Share Document