Manufacturing of Aluminum Metal Matrix Cast Composites with Carbon Based Additives for Thermal Management Applications

2016 ◽  
Vol 879 ◽  
pp. 909-914 ◽  
Author(s):  
Alexander Katz-Demyanetz ◽  
Rosario Squatrito ◽  
Ivan Todaro ◽  
Shai Essel ◽  
Henning Zeidler ◽  
...  

This work focuses on the production of new high conductive carbon based MMC (Metal Matrix Composites) or co-cast components obtained by casting processes. These novel thermally conductive structures are designed to face modern heat management challenges in critical fields such as power micro-electronics, automotive and aerospace industries, renewable energy generation as well as highest performance combustion engines. The sought parts will be assembled by different heat conductive aluminum-carbon composites and for this reason different heat conductive MMCs have been studied. Their combination into once cast aluminum part may allow the part to meet applicative needs for heat management challenges. The cast production routes as well as thermal behavior of the obtained materials has been studied by means of numerical (Finite Element Methods) approaches in order to determine the effective thermal conductivity in the different directions of heat dissipation. Some kinds of casting methods have been FEM simulated and then performed practically. TPG/aluminum interface microstructure has been studied.

2021 ◽  
Vol 87 (5) ◽  
pp. 34-42
Author(s):  
N. B. Podymova ◽  
I. E. Kalashnikov ◽  
L. I. Kobeleva

One of the most critical manufacturing defects of cast metal-matrix composites is a non-uniform porosity distribution over the composite volume. Unevenness of the distribution leads not only to local softening, but also plays a key role in the evolution of the damage process under the external loads. The goal of the study is to apply a new laser-ultrasonic method to in-situ study of a local porosity in reactive cast aluminum-matrix composites. The proposed method is based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in the studied materials. Laser excitation and piezoelectric detection of ultrasound were carried out using a laser-ultrasonic transducer. Two series of reactive cast aluminum-matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti added with synthetic diamond nanoparticles. It is shown that for both series of the composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by the Gaussian probability distribution applicable for statistics of large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites of two series is approximated by the same nearly linear function regardless of the size and fraction of reinforcing particles. This function was used to derive the formula for calculation of the local porosity in the studied composites. The developed technique seems to be promising in revealing potentially dangerous domains with high porosity in reactive-cast metal-matrix composites.


Hybrid composites are those composites which have a combination of two or more reinforcements in a single matrix. In this study, Hybrid Aluminum Metal Matrix Composites were fabricated by using Stir Casting technique. Hybrid composites with three reinforcements such as Aluminum oxide(Al2O3 ), Silicon Carbide (SiC) and Boron Carbide (B4C) in different proportions are considered and Aluminum alloy 6061-T6 (Al6061) as base alloy matrix. Later, the cast aluminum metal matrix composites were machined as per ASTM standards with required dimensions. Mechanical tests such as tensile, flexural, Charpy impact, Brinell Hardness tests were conducted on the composites fabricated inorder to evaluate effect of reinforcements. Morphological study of the composites is carried out by using Scanning electron microscope (SEM). The test results were studied and analyzed.


2008 ◽  
Vol 59 ◽  
pp. 148-152 ◽  
Author(s):  
J.C. Lloyd ◽  
W.J. Clegg

This paper examines the effect of anisotropy on the effective composite thermal conductivity, Kc, of metal matrix composites containing carbon-based inclusions. Added effects of thermal interface conductance, hbd, and size have also been considered. It has been found that at high hbd values, the effective thermal conductivity of the composite is limited by inclusion anisotropy. At lower hbd values and smaller inclusion sizes, this effect is greatly diminished due to the more dominant effect of limited heat flow across the interface.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2191
Author(s):  
Andrzej Rybak ◽  
Lukasz Malinowski ◽  
Agnieszka Adamus-Wlodarczyk ◽  
Piotr Ulanski

The evaluation of a possible application of functional shrinkable materials in thermally conductive electrical insulation elements was investigated. The effectiveness of an electron beam and gamma radiation on the crosslinking of a selected high density polyethylene grade was analyzed, both qualitatively and quantitatively. The crosslinked polymer composites filled with ceramic particles were successfully fabricated and tested. On the basis of the performed investigation, it was concluded that the selected filler, namely a boron nitride powder, is suitable for the preparation of the crosslinked polymer composites with enhanced thermal conductivity. The shape memory effect was fully observed in the crosslinked samples with a recovery factor reaching nearly 99%. There was no significant influence of the crosslinking, stretching, and recovery of the polymer composite during shape memory phenomenon on the value of thermal conductivity. The proposed boron nitride filled polyethylene composite subjected to crosslinking is a promising candidate for fabrication of thermally shrinkable material with enhanced heat dissipation functionality for application as electrically insulating components.


Sign in / Sign up

Export Citation Format

Share Document