Rietveld Refinement Strategy of CaTa4-xNbxO11 Solid Solutions Using GSAS-EXPGUI Software Package

2017 ◽  
Vol 888 ◽  
pp. 167-171 ◽  
Author(s):  
Fadhlina Che Ros

Crystal structures of CaTa4-xNbxO11 solid solutions (x = 0, 1 and 2) in space group P6322, have been refined by application of the Rietveld method X-ray powder diffraction profile. Refinement were carried out using GSAS software and EXPGUI interface. The unit cell parameters and cell volume increase with increasing Nb content; all samples contain random distribution of Ta/Nb. Strategy and procedures for CaTa4-xNbxO11 solid solutions refinement are reported. The structure consists of layers of tantalum-oxygen bipyramids sharing-edges alternating with layers of octahedra.

Author(s):  
A. U. Sheleg ◽  
V. F. Gremenok ◽  
A. S. Sereda ◽  
V. G. Hurtavy ◽  
V. A. Chumak ◽  
...  

The quaternary semiconductors Cu2CdSnS4, Cu2CdSnSe4 and Cu2CdSn(SxSe1–x)4 solid solutions were synthesized by the one-temperature method from the elementary components. The X-ray diffraction method showed that the obtained polycrystalline samples are single-phased. The unit cell parameters of the synthesized compounds and Cu2CdSn(SxSe1–x)4 solid solutions were determined from diffraction spectra by the full-profile analysis using the Rietveld method with the Fullprof software package. It has been established that with an increase in sulfur concentration, the unit cell parameters decrease smoothly linearly in accordance with the Vegard rule, which indicates the formation of a continuous series of solid solutions in the Cu2CdSn(SxSe1–x)4 system within the range 0 ≤ x ≤ 1. The parameter of crystal lattice tetragonal distortions h of the investigated compounds is calculated. The h values are close to 1 for all the compositions studied, which indicates a small crystal lattice distortion of the obtained samples.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


2017 ◽  
Vol 899 ◽  
pp. 48-53
Author(s):  
Rodrigo Uchida Ichikawa ◽  
Walter Kenji Yoshito ◽  
Margarida Juri Saeki ◽  
Willian C.A. Maranhão ◽  
Fátima Goulart ◽  
...  

Nanostructured Mn-Zn ferrites were synthesized using co-precipitation in alkaline solution with different pH. The samples were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermal analysis (TG-DTA), dynamic light scattering (DLS) and scanning electron microscopy (SEM) techniques. Monophasic nanoparticles were formed when synthesized with pH 10.5. This sample was heat-treated and its XRD data was refined by the Rietveld method. Mean crystallite sizes and microstrains were determined from X-ray line profile analysis using Single-Line and Warren-Averbach methods, which revealed a mean crystallite size of approximately 10 nm and negligible microstrains. Zn content was estimated using refined cell parameters, giving a value of 33 at %, in accordance with XRF result. TG-DTA revealed that the incorporation of α-Fe2O3 occurs around 1130 °C and 1200 °C with recrystallization of the Mn-Zn ferrite spinel phase. DLS showed that mean particle size increase with temperature up to 1159 nm at 800 °C. SEM analysis showed the samples agglomerate and present similar morphology with negligible size changing when calcined between 280 °C and 800 °C. However, the sample calcined at 1200 °C presents larger agglomerates due to the sintering process.


2020 ◽  
Vol 9 (4) ◽  
pp. 1562-1568

The incorporation of magnesium in the synthetic apatite has been associated with the biomineralization process and osteoporosis therapy in humans and animals. β-tricalcium phosphate (β-TCP) is one of the most common bioceramics widely applied in bone cement and implants. In this work, Ca-deficient apatite (CDA) with a theoretical 0.08 Mg/(Ca+Mg) ratio was synthesized by the rapid reaction between Ca(OH)2, MgCl2.6H2O and H3PO4 at 40°C and the resultant powder calcined at 650 °C for 10h. X-ray powder diffraction analysis (XRD), in combination with the Rietveld method (Fullprof-suite), was employed for quantitative phase analysis and structural refinement. The results of XRD indicate that magnesium can substitute for calcium into a β-TCP structure inducing a reduction of the cell parameters and the compound crystallizes in the rhombohedral R3c structure, with the following unit cell constants: a = b = 10.3560 Å, c = 37.1718 Å, and cell volume V = 3452.44. The analysis indicated that the substitution of Mg2+ on the M(4) and M(5) sites were, approximately, 2.61 and 6.97 mol%, corresponding to the Ca2.72(MgIV0.07, MgV0.21)(PO4)2 stoichiometric formula and 0.09 Mg/(Ca+Mg) ratio.


Open Physics ◽  
2012 ◽  
Vol 10 (1) ◽  
Author(s):  
Ludmila Sevastyanova ◽  
Olga Gulish ◽  
Vladimir Stupnikov ◽  
Vladimir Genchel ◽  
Oleg Kravchenko ◽  
...  

AbstractCompounds with the general formula Mg1−x AlxB2 were obtained by two-step ceramic synthesis. All compounds were characterized by X-ray diffraction, NMR spectroscopy, and by four point probe resistivity measurements in various magnetic fields method. The diborides unit cell parameters were determined as a function of the Al mole fraction. With the vaues of x up to 0.40 (where x is the composition of the stock prepared for sintering), the unit cell parameters of Mg1−x AlxB2 are similar to those of pure MgB2 and the superconducting transition temperature was lowered. For stock compositions of 0:25 ≤ x ≤ 0:60, the products contain a superstructure, also superconducting phase, which becomes the only product at x = 0:50, and at x > 0:60 this phase is replaced by AlB2-based solid solutions.


1982 ◽  
Vol 26 ◽  
pp. 119-128 ◽  
Author(s):  
Ronald C. Gehringer ◽  
Gregory J. McCarthy ◽  
R.G. Garvey ◽  
Deane K. Smith

Solid solutions are pervasive in minerals and in industrial inorganic materials. The analyst is often called upon to provide qualitative and quantitative X-ray phase analysis for specimens containing solid solutions when all that is available are Powder Diffraction File (PDF) data or commercial standards for the end members. In an earlier paper (1) we presented several examples of substantial errors in accuracy of quantitative analysis that can arise when the crystallinity and composition of the analyte standard do not match those of the analyte in the sample of interest. We recommended that to obtain more accurate quantitative analyses, one should determine the analyte composition (e.g., from XRF on grains seen in a SEM or from comparison of cell parameters with those of the end members) and synthesize an analyte standard with this composition and with a crystallinity approximating that of the analyte (e.g., as determined from peak breadth or α1/ α2 splitting).


2020 ◽  
Vol 225 ◽  
pp. 01013
Author(s):  
K. Derraji ◽  
C. Favotto ◽  
J-C Valmalette ◽  
S. Villain ◽  
J-R. Gavarri ◽  
...  

In the general framework of the development of materials with tunable photoluminescence, a series of cerium samarium tungstates Ce(2-x)Smx(WO4)3 with x≤0.3 was synthesized by a coprecipitation method followed by thermal treatment at 1000 °C. The polycrystalline compounds were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence experiments. In the present work, the objective would be to determine the role of PL emitting centers in the variations of PL intensities. Firstly, Rietveld analysis showed a decrease of cell parameters and confirmed that a solid solution was obtained. Diffraction profile analyses showed that structural distortions increasing with composition x were observed: they were ascribed to difference in cation sizes of Ce3+ and Sm3+, and to defects generated during crystal growth. The photoluminescence (PL) spectra were obtained under X-Ray (45 kV-35 mA) and UV (364.5 nm) excitations. Two PL emissions of Ce3+ were observed only under UV excitation. Four PL emissions of Sm3+ were observed under UV and X-ray excitations, and their intensities decreased with increasing composition x. Two additional transitions were observed under UV and X-ray excitations: they were attributed to oxygen vacancy defects. In the range 800 to 1000 nm, an increasing IR emission is observed: it was ascribed to emissions due to other oxygen vacancies. The main results are reported in Table 1. The chromaticity diagram (see Figure 1) showed that the colors associated with PL responses vary with Sm composition and excitation energies. This offers the opportunity to develop materials with tunable PL. To better understand this complex behavior, now, we plan to study the solid solution in the composition range x>0.3.


2004 ◽  
Vol 19 (3) ◽  
pp. 272-279 ◽  
Author(s):  
Abderrahim Aatiq

The crystal structures of ASnFe(PO4)3 (A=Na2, Ca, Cd) phases, obtained by conventional solid state reaction techniques at (950–1000 °C), were determined at room temperature from X-ray powder diffraction (XRD) using Rietveld analysis. The three materials exhibit the Nasicon-type structure (R3c space group, Z=6) with a random distribution of Sn(Fe) within the framework. Hexagonal cell parameters when A=Na2, Ca and Cd are: a=8.628(1) Å, c=22.151(2) Å; a=8.569(1) Å, c=22.037(2) Å and a=8.587(1) Å, c=21.653(2) Å, respectively. Structural refinements show a partial occupancy of M1 (Na(1)) and M2 (Na(2)) sites in Na2SnFe(PO4)3 leading to the cationic distribution [Na1.22□1.78]M2[Na0.78□0.22]M1SnFe(PO4)3. Ca2+ ions are distributed only in the M1 site of [□3]M2[Ca]M1SnFe(PO4)3. From XRD data, it is difficult to unambiguously distinguish between Cd2+ and Sn4+ ions in CdSnFe(PO4)3. Nevertheless the overall set of cation–anion distances within the Nasicon framework clearly shows that the cationic distribution can be illustrated by the [□3]M2[Cd]M1SnFe(PO4)3 crystallographic formula. Distortion within the [Sn(Fe)(PO4)3] frameworks, in ASnFe(PO4)3 (A=Na2,Ca,Cd) phases, is shown to be related to the M1 site size. © 2004 International Centre for Diffraction Data.


1998 ◽  
Vol 54 (4) ◽  
pp. 358-364 ◽  
Author(s):  
K. G. Hatzisymeon ◽  
S. C. Kokkou ◽  
A. N. Anagnostopoulos ◽  
P. I. Rentzeperis

A series of thallium ternary chalcogenides with the composition Tl2x In2(1−x)Se2, x = 0.2, 0.3,...0.9, have been studied by X-ray powder and, for some of them, single-crystal diffraction. They are tetragonal, space group I4/mcm, Z = 4, and isostructural with the binary semiconductor TlSe. Their crystal structures have been solved by direct methods and refined by the Rietveld method to a precision which is satisfactorily comparable to single-crystal results. As x is changed from x = 0.2 to x = 0.9 the unit-cell parameters and volume decrease or increase following Kurnakov's law, which is valid for solid solutions. Refined positional parameters of Se, In—Se and Tl—Se bond lengths vary with x also according to the same law. The distribution of In and Tl cations in 4(a) and 4(b) sites depends on the stoichiometry x and the crystals are composed of [In3+Se2]_{\infty}^- chains along the c axis in which InSe4 tetrahedra share edges; the chains are interconnected with Tl+(In+) ions.


Sign in / Sign up

Export Citation Format

Share Document