Improvement Effects of Different Environmental Materials on Coastal Saline-Alkali Soil in Yellow River Delta

2018 ◽  
Vol 913 ◽  
pp. 879-886
Author(s):  
Fang Ze Li ◽  
Zhan Bin Huang ◽  
Yan Ma ◽  
Zai Jin Sun

Based on the characters of coastal saline-alkali soil in Yellow River Delta, four kinds of soil with the total salt content of 0.13%, 0.24%, 0.86%, 2.07% respectively, were used as the research objects in this study. Leaching experiment of soil improvement were operated by using flue gas desulfurization gypsum and humic acid as the soil amendments through single or combined application. After leaching, the pH values, EC and the total salt content including Na+, Ca2+ and Mg2+ of four times leachate were analyzed. Meanwhile, the sodium adsorption ratio (SAR) was also calculated in order to evaluate the amendment efficiency. The results showed that: the pH values of the leachate of flue gas desulfurization gypsum without (treat A) or with humic acid (treat C) were significantly lower than that of control group (treatment CK) and humic acid (treatment B), while the EC values were significantly higher. For the saline-alkali soil, all of treatment A, B and C could decrease soil pH, exchangeable Na+ and soil SAR. Treatment B could decrease the total salt content insignificantly, while treatment A and C could increase the total salt content significantly. By analyzing the results, it was found that treatment C had the most significant improvement effect, comparing with the treatment CK. PH was decreased respectively 0.26%, 0.83%, 1.05% and 1.83%, Na+ was decreased respectively 82.4%, 92.6%, 89.1% and 78.6%, SAR was decreased respectively 97.4%, 98.5%, 97.7% and 94.7%. The experimental results demonstrate that a combined application of flue gas desulfurization gypsum and humic acid is a potential method to improve coastal saline alkali soil in Yellow River Delta on the basis of ensuring the irrigation amount.

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Chuanxiao Liu ◽  
Kesheng Li ◽  
Depeng Ma

Structural characteristics of local saline-alkali soil in the Yellow River Delta were studied by microscopic test methods of liquid nitrogen vacuum freeze-drying machine, fully automatic mercury intrusion porosimetry, X-ray diffractometer, and high- and low-vacuum scanning electron microscope. Permeability of the saline-alkali soil belongs to two grades of micropermeable water and extremely micropermeable water. Average volume ratio of pores with diameters no more than 2 μm is 86.25%; therefore, the saline-alkali soil may mainly consist of micropores and ultramicropores. Most void ratios of the soil are not beyond 0.5, and its dry densities are all greater than 1.6 g/cm3. Because average proportion of the clay minerals is only 12.24%, they are obviously not the main reason for poor permeability of the local saline-alkali soil. Based on the structural characteristics of compact structure and slightly developed fracture, mechanisms of surface runoff, and water-salt migration of the local saline-alkali soil, a salt-discharging engineering model mainly with surface runoff was established considering auxiliary infiltration and without interflow. Salt content distribution of the local saline-alkali soil is studied experimentally, by which relationship between salt content and conductivity has been fitted as y = 2.74x. The relationships between depth and salt content in the saline-alkali soil region present that the depth of salt-discharging engineering as open ditch should be beyond 60 cm. From the relationships between precipitation and salt content, the effectiveness of engineering measure shown in the salt-discharging model has been verified immediately or indirectly, and the engineering salt-discharging model may be suitable for managing saline-alkali soil in the Yellow River Delta.


2013 ◽  
Vol 726-731 ◽  
pp. 463-469
Author(s):  
Guang Ming Zhao ◽  
Si Yuan Ye ◽  
Yuan Zheng Xin ◽  
Xi Gui Ding ◽  
Hong Ming Yuan ◽  
...  

Yellow River Delta has a special status of coastal wetland research in China. The microbial community characteristics such as community structure, activity and size in the wetland were investigated in the modern Yellow River Delta of Shandong Province. The aim was to find the effect of salinity on the microbial community. There was a significant negative linear relationship between soluble salt content and the total number of microbes, overall microbial activity, and diversity of culturally viable microbes. Differences of the soil bacterial community in different depths were monitored using the terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. In a word, these results indicate that higher salinity and deeper depth resulted in a smaller, more stressed microbial community which was less active and diverse .


2021 ◽  
Vol 13 (2) ◽  
pp. 822
Author(s):  
Lingling Bian ◽  
Juanle Wang ◽  
Jing Liu ◽  
Baomin Han

Soil salinization poses a significant challenge for achieving sustainable utilization of land resources, especially in coastal, arid, and semi-arid areas. Timely monitoring of soil salt content and its spatial distribution is conducive to secure efficient agricultural development in these regions. In this study, to address the persistent problem of soil salinization in the Yellow River Delta in China, the feature space method was used to construct multiple feature spaces of surface albedo (Albedo)–modified soil-adjusted vegetation index (MSAVI), salinity index (SI)–Albedo, and SI–normalized difference vegetation index (NDVI), and an optimal inversion model of soil salinity was developed. Based on Landsat 8 Operational Land Imager (OLI) image data and simultaneous field-measured sampling data, an optimal model from 2015 to 2019 was used to obtain the soil salt content in the region at a 30 m resolution. The results show that the proportion of soil salinization in 2015 and 2019 was approximately 76% and 70%, respectively, and overall soil salinization showed a downward trend. The salinization-mitigated areas are primarily distributed in the southwest of the Yellow River Delta, and the aggravated areas are distributed in the northeast and southeast. In general, the spatial variation characteristics show an increasing trend from the southwest to the eastern coastal areas, corresponding to the formation mechanism of salt accumulation in the region. Further, corresponding sustainable development countermeasures and suggestions were proposed for different salinity levels. Meanwhile, this study revealed that the SI–Albedo feature space model is the most suitable for inversion of salinization in coastal areas.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 546
Author(s):  
Xinyang Yu ◽  
Chunyan Chang ◽  
Jiaxuan Song ◽  
Yuping Zhuge ◽  
Ailing Wang

Monitoring salinity information of salinized soil efficiently and precisely using the unmanned aerial vehicle (UAV) is critical for the rational use and sustainable development of arable land resources. The sensitive parameter and a precise retrieval method of soil salinity, however, remain unknown. This study strived to explore the sensitive parameter and construct an optimal method for retrieving soil salinity. The UAV-borne multispectral image in China’s Yellow River Delta was acquired to extract band reflectance, compute vegetation indexes and soil salinity indexes. Soil samples collected from 120 different study sites were used for laboratory salt content measurements. Grey correlation analysis and Pearson correlation coefficient methods were employed to screen sensitive band reflectance and indexes. A new soil salinity retrieval index (SSRI) was then proposed based on the screened sensitive reflectance. The Partial Least Squares Regression (PLSR), Multivariable Linear Regression (MLR), Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), and Random Forest (RF) methods were employed to construct retrieval models based on the sensitive indexes. The results found that green, red, and near-infrared (NIR) bands were sensitive to soil salinity, which can be used to build SSRI. The SSRI-based RF method was the optimal method for accurately retrieving the soil salinity. Its modeling determination coefficient (R2) and Root Mean Square Error (RMSE) were 0.724 and 1.764, respectively; and the validation R2, RMSE, and Residual Predictive Deviation (RPD) were 0.745, 1.879, and 2.211.


Sign in / Sign up

Export Citation Format

Share Document