Structural Characterization of Foamed Composite Structural Insulated Panel with Coir for Load Bearing Wall Application

2018 ◽  
Vol 934 ◽  
pp. 222-226
Author(s):  
Jericson H. Advincula ◽  
Dustin Glenn C. Cuevas ◽  
Allan Dave A. Dela Cruz ◽  
John Paul D. Carreon

Permanent formwork building system is a method that uses the formwork as a contributor to the load bearing capacity of the structure. This study characterized the proposed foamed composite structural insulated panel (CSIP) with coir for load bearing wall application in low rise construction. The percentage of coir in foamed concrete that could significantly increase the compressive and flexural strength of the panel considering the effect of coir to the workability of the foamed concrete were determined. The results showed that the samples with 0.5% coir had the maximum increase in its compressive and flexural capacity and further addition of coir decreases its capacities. The results also showed that it could carry the required design loads. Moreover, using Euler’s buckling equation for the effect of slenderness, the panel could be used as exterior wall for a height of 2m, 3m, and 4m and as interior wall for a height of 2m and 3m. It can be concluded that the proposed panel could be used as a load bearing wall in low rise construction.

2021 ◽  
Vol 19 (2) ◽  
pp. 33-40
Author(s):  
Hari Ram Parajuli ◽  
Arjun Ghimire

5) Though a traditional material used for construction for ages, masonry is a complex composite material, and its mechanical behavior is influenced by a large number of factors, is not generally well understood. This research aims to study the methodology available in the literature to evaluate the increase in performance of masonry by applying different reinforcement options under in-plane lateral loading. Nonlinear static analysis has been carried out as part of this research to achieve the above objectives. Different unreinforced masonry wall panels were analyzed at various load conditions. Material properties for the masonry wall were taken from the experimental test results of previous literature. The walls were first checked for two failure mechanisms. The stress distributions of walls were checked in each step of analysis and shear failure, and rocking failure was found. Each wall was then analyzed for six different reinforcement options. The comparison of results obtained from the reinforced wall analysis with that of the unreinforced wall indicated significant increase in lateral load-bearing capacity and decreased wall displacement with reinforcement. The maximum increase in load-bearing capacity was achieved by adding chicken wire mesh or CFRP bands throughout the wall while the maximum decrease in displacement was achieved by adding 12 mm diameter bars at the spacing of one meter.


2012 ◽  
Vol 587 ◽  
pp. 144-149 ◽  
Author(s):  
Hanizam Awang ◽  
Md Azree Othuman Mydin ◽  
Ahmad Farhan Roslan

The present study covers the use of fibre in lightweight foamed concrete (LFC) to produce the lightweight concrete for use in construction of non-load bearing elements. LFC with 600, 1000 and 1400 kg/m3 density were cast and tested. Polypropylene fibres with different percentage were used into LFC and the resulting products were compared to normal LFC. Compressive strength, flexural strength and drying shrinkage tests were carried out to evaluate the mechanical properties up to 180 days. The addition of fibres in LFC showed no contribution on compressive strength but improvement in the flexural and shrinkage test results.


2015 ◽  
Vol 732 ◽  
pp. 353-356 ◽  
Author(s):  
Milan Rydval ◽  
Petr Huňka ◽  
Jiří Kolísko

Load-bearing capacity of fine grained cement-based composite materials UHPFRC depends on the homogeneity of the steel fiber distribution at cross section. The homogeneity of the steel fiber distribution has significant effect to the mechanical properties of UHPFRC elements, especially at tensile strength in bending. The load-bearing capacity depending on the homogeneity of steel fibers at the permanent formwork slabs made from UHPFRC is shown in this paper.


Author(s):  
S. F. Hayes ◽  
M. D. Corwin ◽  
T. G. Schwan ◽  
D. W. Dorward ◽  
W. Burgdorfer

Characterization of Borrelia burgdorferi strains by means of negative staining EM has become an integral part of many studies related to the biology of the Lyme disease organism. However, relying solely upon negative staining to compare new isolates with prototype B31 or other borreliae is often unsatisfactory. To obtain more satisfactory results, we have relied upon a correlative approach encompassing a variety EM techniques, i.e., scanning for topographical features and cryotomy, negative staining and thin sectioning to provide a more complete structural characterization of B. burgdorferi.For characterization, isolates of B. burgdorferi were cultured in BSK II media from which they were removed by low speed centrifugation. The sedimented borrelia were carefully resuspended in stabilizing buffer so as to preserve their features for scanning and negative staining. Alternatively, others were prepared for conventional thin sectioning and for cryotomy using modified procedures. For thin sectioning, the fixative described by Ito, et al.


2011 ◽  
Vol 44 (06) ◽  
Author(s):  
A Bracher ◽  
C Kozany ◽  
AK Thost ◽  
F Hausch

Sign in / Sign up

Export Citation Format

Share Document