Change in Yield Strength of Nb-Bearing Ultra-Low Carbon Steels by Temper-Rolling

2018 ◽  
Vol 941 ◽  
pp. 230-235
Author(s):  
Ling Ling Yang ◽  
Tatsuya Nakagaito ◽  
Yoshimasa Funakawa ◽  
Katsumi Kojima

Yield strength of low carbon mild steel decreases when temper-rolling is applied to release yield point elongation. Generally mobile dislocation used to be considered as the cause of the YS lowering. However from Bailey-Hirsch theory, strength should be higher with temper-rolling because of the increase of dislocation density. To newly explain the lowering yield strength by temper-rolling, standing at the point that a few ppm carbon change Hall-Petch coefficient , decrease in yield strength by temper-rolling is investigated using an ultra-low carbon steel. Yield strength of steel with the small amount of solute carbon increased after 2% temper-rolling and didn’t change after aging. On the other hand, yield strength of steel with the high amount of solute carbon decreased after 2% temper-rolling and increased again after aging. Despite solute carbon content, the Hall-Petch σ0 increased by dislocation strengthening of temper-rolling. Hall-Petch coefficient ky of low solute carbon steel remained at the low level even after temper-rolling or aging , however, that of high solute carbon steels significantly decreased after temper-rolling and increased again after aging. Yield strength reduction of the high solute carbon steel can be attributed to the decrease of ky.

2007 ◽  
Vol 558-559 ◽  
pp. 933-938 ◽  
Author(s):  
S. Morito ◽  
T. Ohba ◽  
Tadashi Maki

The microstructural development of cold-rolled lath martensite structure in the low carbon steels and ultra-low carbon steels are studied and compared. In low carbon steel of as-quenched specimens, very thin austenite films exist at boundaries of adjacent laths, but do not exist in ultra-low carbon steel. After cold rolling for the low carbon steel, the lamellar dislocation cells, irregularly bent laths and kinked laths regions are frequently observed and, in some instances, the disappearance of initial lath boundaries is observed. The existence of retained austenite films suggests that the lath boundaries rarely disappear during cold-rolling in the low carbon steel.


2010 ◽  
Vol 638-642 ◽  
pp. 3242-3247 ◽  
Author(s):  
Hui Guo ◽  
Zhi Qiang Yao ◽  
Shan Wu Yang ◽  
Xin Lai He

To improve the toughness and weldability, the carbon content of the steels has to be deduced, and more and more attention has been attracted to the low carbon and ultra-low carbon steels. To strengthen the microstructure Cu and Nb-bearing steels are developed. However, the knowledge on influence of combined addition of Cu and Nb is still in lack. The microstructure and mechanical properties are studied in the 6-mm thick as-rolled and tempered ultra-low carbon steel plates with varied copper and niobium content. The microstructure and mechanical properties are studied in the 6-mm thick as-rolled and tempered ultra-low carbon steel plates with varied copper and niobium content. The experimental results show that if niobium is added without copper, the increase of niobium addition does not have a significant influence on the phase transformation and mechanical properties before tempering. The strength and toughness of those copper-free niobium steels do not vary significantly after tempered at different temperatures, while the strength of niobium steels with 1.8% copper added increases after tempered in the range of 450-650°C and reaches a peak at 500-550°C. If combined with 1.8% copper, the increase of niobium addition from 0.08% to 0.16% improves the hardenabililty and strength significantly, and the strength peak after tempering moves to a lower temperature. The strength of air-cooled niobium steels with 1.8% copper added is usually higher than those water-cooled, while after tempered at a proper temperature, the strength of the latter becomes higher than the former.


1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Author(s):  
Lei Cao ◽  
De-li Shang ◽  
Xin-gang Ai ◽  
Peng-liang Jin ◽  
Yuan-you Xiao ◽  
...  

Calphad ◽  
1986 ◽  
Vol 10 (2) ◽  
pp. 117-128 ◽  
Author(s):  
M. Grujicic ◽  
I. Wang ◽  
W.S. Owen

Author(s):  
Yoshikazu Todaka ◽  
Hironori Nagai ◽  
Yosuke Takubo ◽  
Miki Yoshii ◽  
Masaaki Kumagai ◽  
...  

2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


1987 ◽  
Vol 109 (3) ◽  
pp. 257-264 ◽  
Author(s):  
E. M. Kopalinsky ◽  
P. L. B. Oxley

Experiments show that the cold working of low carbon steel work materials can improve their machinability by reducing cutting forces and improving surface finish and tool life. The somewhat paradoxical result of reducing cutting forces by cold working a material so that its hardness is increased is explained in this paper by using a machining theory which takes account of the flow stress properties of the work material and can thus allow for the effects of cold working.


Sign in / Sign up

Export Citation Format

Share Document