Detection of Graphene Materials in Fibers

2020 ◽  
Vol 976 ◽  
pp. 90-95
Author(s):  
Wei Dong Li ◽  
Ton Gjun Ma ◽  
Zhi Ping Mao

A method for the identification of graphene materials in fibers by high-resolution transmission electron microscopy (HRTEM)-Energy Dispersive Spectroscopy (EDS) has been reported. Two ways to prepare samples are available, namely the dissolution extraction and the ultra-thin sectioning method. For samples prepared by any method, the graphene material in the fiber can be detected by the following steps. Firstly,the elemental composition of the microparticle is demonstrated by EDS. Secondly, the morphology of the particles in the fiber can be obtained by TEM, and the number of layers of graphene materials is able to observed directly from the edge of sheet.

Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Carbon ◽  
2017 ◽  
Vol 117 ◽  
pp. 174-181 ◽  
Author(s):  
Chang’an Wang ◽  
Thomas Huddle ◽  
Chung-Hsuan Huang ◽  
Wenbo Zhu ◽  
Randy L. Vander Wal ◽  
...  

2016 ◽  
Vol 30 (20) ◽  
pp. 1650269 ◽  
Author(s):  
Thi Giang Le ◽  
Minh Tuan Dau

High-resolution transmission electron microscopy (HR-TEM) has been used to investigate the structural properties of GeMn/Ge nanocolumns multilayer samples grown on Ge(001) substrates by means of molecular beam epitaxy (MBE) system. Four bilayers with the spacer thickness in the range between 6 nm and 15 nm and 10 periods of bilayers of Ge[Formula: see text]Mn[Formula: see text]/Ge nanocolumn are presented. A simplified 2D model based on the theory of elastic constant interactions has been used to provide reasonable explanations to the vertical self-organization of GeMn nanocolumns in multilayers.


Sign in / Sign up

Export Citation Format

Share Document