Simulative Estimation of Reaction Force and Drill Accuracy of CFRP Composites

2020 ◽  
Vol 978 ◽  
pp. 344-350
Author(s):  
Dannana Dimple ◽  
Prashant Elango ◽  
Marimuthu K. Prakash

The present work deals with the finite element simulation of drilling of fibre-reinforced composites. The simulation is done using commercially available software. Hashin failure criteria has been used to simulate the drilling process. Three dimensional drill model was created and Hashin failure is defined via VUMAT sub-routine. Three-dimensional Hashin failure have larger stress and strain analysis resolution. This research is focused on validating reaction force and accuracy of drill. Reaction force obtained in composite drilling simulation is compared with experimental data. The work is focused on reproducing the simulation of composite modelling and composite damage rather than theoretical explanation of composite material and mathematical model behind the simulation. Thus, laying the knowledge to simulate composite fibres failure.

2019 ◽  
Vol 46 (5) ◽  
pp. 2137-2144
Author(s):  
Sahmin Lee ◽  
Seunghyun Choi ◽  
Sehwan Kim ◽  
Yeongjin Jeong ◽  
Kyusup Lee ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199497
Author(s):  
Guanghui Xu ◽  
Shengkai Su ◽  
Anbin Wang ◽  
Ruolin Hu

The increase of axle load and train speed would cause intense wheelrail interactions, and lead to potential vibration related problems in train operation. For the low-frequency vibration reduction of a track system, a multi-layer track structure was proposed and analyzed theoretically and experimentally. Firstly, the analytical solution was derived theoretically, and followed by a parametric analysis to verify the vibration reduction performance. Then, a finite element simulation is carried out to highlight the influence of the tuned slab damper. Finally, the vibration and noise tests are performed to verify the results of the analytical solution and finite element simulation. As the finite element simulation indicates, after installation of the tuned slab damper, the peak reaction force of the foundation can be reduced by 60%, and the peak value of the vertical vibration acceleration would decrease by 50%. The vibration test results show that the insertion losses for the total vibration levels are 13.3 dB in the vertical direction and 21.7 dB in the transverse direction. The noise test results show that the data of each measurement point is smoother and smaller, and the noise in the generating position and propagation path can be reduced by 1.9 dB–5.5 dB.


Author(s):  
Ruta Jakušonoka ◽  
Zane Pavāre ◽  
Andris Jumtiņš ◽  
Aleksejs Smolovs ◽  
Tatjana Anaņjeva

Abstract Evaluation of the gait of patients after polytrauma is important, as it indicates the ability of patients to the previous activities and work. The aim of our study was to evaluate the gait of patients with lower limb injuries in the medium-term after polytrauma. Three-dimensional instrumental gait analysis was performed in 26 polytrauma patients (16 women and 10 men; mean age 38.6 years), 14 to 41 months after the trauma. Spatio-temporal parameters, motions in pelvis and lower extremities joints in sagittal plane and vertical load ground reaction force were analysed. Gait parameters in polytrauma patients were compared with a healthy control group. Polytrauma patients in the injured side had decreased step length, cadence, hip extension, maximum knee flexion, vertical load ground reaction force, and increased stance time and pelvic anterior tilt; in the uninjured side they had decreased step length, cadence, maximum knee flexion, vertical load ground reaction force and increased stance time (p < 0.05). The use of the three-dimensional instrumental gait analysis in the evaluation of polytrauma patients with lower limb injuries consequences makes it possible to identify the gait disorders not only in the injured, but also in the uninjured side.


SIMULATION ◽  
2002 ◽  
Vol 78 (10) ◽  
pp. 587-599 ◽  
Author(s):  
Ali O. Atahan

Computer simulation of vehicle collisions has improved significantly over the past decade. With advances in computer technology, nonlinear finite element codes, and material models, full-scale simulation of such complex dynamic interactions is becoming ever more possible. In this study, an explicit three-dimensional nonlinear finite element code, LS-DYNA, is used to demonstrate the capabilities of computer simulations to supplement full-scale crash testing. After a failed crash test on a strong-post guardrail system, LS-DYNA is used to simulate the system, determine the potential problems with the design, and develop an improved system that has the potential to satisfy current crash test requirements. After accurately simulating the response behavior of the full-scale crash test, a second simulation study is performed on the system with improved details. Simulation results indicate that the system performs much better compared to the original design.


2011 ◽  
Vol 383-390 ◽  
pp. 1555-1561
Author(s):  
Wu Li Wang ◽  
Yan Jiang Wang

In view of the characteristics of the oil drilling process and the existing problems of traditional simulation system, a new distributed drilling simulation model was established based on Multi-Agent system (MAS) technology. By means of autonomous, cooperative and reactive characteristic of Agent, the drilling laws and phenomenon can be reflected promptly and accurately under any circumstances. The MAS modeling for oil drilling simulation, the structure and knowledge representation of each Agent and the communication among Agents are described in detail. Finally, an Agent-based normal drilling well control simulation training example was given. The simulation results show that the simulator based on Multi-Agent system has better performances than traditional drilling simulators, and enhances the integrated training function of the drilling simulation system.


Sign in / Sign up

Export Citation Format

Share Document