Physico-Mechanical Properties of Treated Chicken Feather–Reinforced Unsaturated Polyester Resin Based Composites

2021 ◽  
Vol 32 ◽  
pp. 73-84
Author(s):  
Md. Farhad Ali ◽  
Md. Sahadat Hossain ◽  
Tanvir Siddike Moin ◽  
Samina Ahmed ◽  
A.M. Sarwaruddin Chowdhury

The influence of chemical treatment on the mechanical properties of treated chicken feather fibre-reinforced unsaturated polyester resin (TCFF-UPR) composites was studied in this research. Redundant portions of chicken from poultry farms are comprehensively contaminating the environment. To minimize environmental pollution, these redundant portions need to use for the production of other materials. In this study, we used chicken feather for the preparation of useful composites combining with unsaturated polyester resin (UPR) to reduce environmental pollution. The composites were prepared successfully by conventional hand lay up technique using modified chicken feather as the reinforcing phase of composites. For preparing composites different percentages (2, 5, 7, 10, 12 and 15% by weight) of fibre were used. Attained tensile test results expressed significant enhancement in the tensile properties of composites, with the optimum combination of tensile strength presented by 5 wt% , tensile modulus presented by 10 wt% untreated chicken feather bio-fibre reinforcement and bending strength by 5 wt% chicken feather bio-fibre reinforcement.

2019 ◽  
Vol 24 ◽  
pp. 1-7
Author(s):  
Md. Naimul Islam ◽  
Harun Ar-Rashid ◽  
Farhana Islam ◽  
Nanda Karmaker ◽  
Farjana A. Koly ◽  
...  

E-glass fiber mat reinforced Unsaturated Polyester Resin (UPR)-based composites were fabricated by conventional hand lay-up technique. The fiber content was varied from 5 to 50% by weight. Mechanical properties (tensile and bending) of the fabricated composites were investigated. The tensile strength (TS) of the 5% and 50% fiber reinforced composites was 32 MPa and 72 MPa, respectively. Similarly, tensile modulus, bending strength and bending modulus of the composites were increased by the increase of fiber loading. Interfacial properties of the composites were investigated by scanning electron microscopy (SEM) and the results revealed that the interfacial bond between fiber and matrix was excellent. Keywords: Unsaturated Polyester Resin, Mechanical Properties, E-glass Fibers, Composites, Polymer.


2019 ◽  
Vol 25 ◽  
pp. 22-31 ◽  
Author(s):  
Farhana Islam ◽  
M. Naimul Islam ◽  
Shahirin Shahida ◽  
Harun Ar Rashid ◽  
Nanda Karmaker ◽  
...  

Jute fabrics reinforced Unsaturated Polyester Resin (UPR)-based composites were prepared by conventional hand lay-up technique. Different proportions (5 to 50% by weight) of fibre content was used in preparation of the composite. Tensile Strength (TS), Tensile Modulus (TM), Bending Modulus (BM), Bending Strength (BS), Impact Strength (IS) of the fabricated composites were studied. Upon each addition of fiber content in the matrix, mechanical properties of the composites were increased. The Tensile Strength (TS) of the 5% and 50% fiber reinforced composites was 18 MPa and 42 MPa respectively. Scanning Electron Microscopy (SEM) showed interfacial properties of the composites and it was revealed that the bond between fiber and matrix was excellent.


2019 ◽  
Vol 1156 ◽  
pp. 60-68 ◽  
Author(s):  
Kamrun N. Keya ◽  
Nasrin A. Kona ◽  
Md. Sahadat Hossain ◽  
Md. Razzak ◽  
Md. Naimul Islam ◽  
...  

Jute fabrics reinforced Polypropylene (PP) matrix composite was fabricated by compression molding and Unsaturated Polyester Resin (UPR) matrix composites were also fabricated by hand lay-up technique. The fiber content of the composites was 40% by weight. Mechanical properties between two types of composites were compared. Tensile Strength (TS), Tensile Modulus (TM), Elongation at break (Eb%) , and Impact Strength (IS) of the jute fabrics/PP composites were found to be 47 MPa, 1.2 GPa, 13% and 8 kg/cm, respectively. On the other hand, TS, TM, Eb%, and IS of the jute fabrics/UPR composite were found to be 43 MPa, 1.3 GPa, 10% and 6 kg/cm, respectively. It was found that both composites showed almost similar mechanical properties. After tensile testing, fracture sides of both types of the composites were studied by Scanning Electron Microscope (SEM) and the results revealed poor fiber matrix adhesion for jute fabrics with PP and UPR. The fabricated composites became partly biodegradable because of jute (natural fiber) and mechanical properties of both types of composites showed promising results for commercial applications.


2019 ◽  
Vol 1156 ◽  
pp. 69-78
Author(s):  
Kamrun N. Keya ◽  
Nasrin A. Kona ◽  
Ruhul A. Khan

This paper represents a comparative study of the different weave structures of jute woven fiber reinforced unsaturated polyester resin (UPR) composites. The weave structures were selected as plain (1/1), twill (2/1), twill (3/1) and basket (2/2). Composites (50% fiber by wt.) were prepared by using hand lay-up technique. The mechanical properties such as tensile strength (TS), bending strength (BS) and impact strength (IS) of the composites were evaluated and compared. It was found that basket weave/UPR based composite showed the highest mechanical properties. The optimum value of TS, BS, TM, BM and IS of the composite were found to be 47 MPa, 80 MPa, 1.4 GPa, 4.8 GPa and 27 KJ/m2.To find out the effect of yarn density on mechanical properties of the composites, 2/1 twill structure was selected and found significant improvement in the mechanical properties with the increase of Ends/Inch (EPI) and Picks/Inch (PPI) in the fabric. Water uptake and degradation behavior in aqueous medium of the composites was also observed.


2021 ◽  
pp. 51305
Author(s):  
Nora Abigail Wilson García ◽  
Jorge Luis Almaral Sánchez ◽  
Ramón Álvaro Vargas Ortiz ◽  
Abel Hurtado Macías ◽  
Nelly Flores Ramírez ◽  
...  

2020 ◽  
Vol 29 ◽  
pp. 2633366X2093589
Author(s):  
Van-Tho Hoang ◽  
Thanh-Nhut Pham ◽  
Young-Jin Yum

Coir is a well-known natural fiber extracted from the husk of a coconut tree. In polymer composite materials, the ultimate performance of coir has been shown using surface modification methods. Among them, sodium hydroxide (NaOH) is a comparative and efficient solution used for surface treatment of lignocellulosic fiber. In contrast to coir, coconut timber, a hardwood that dominates the weight of the coconut tree, has not been appropriately considered for use in polymer composites. Therefore, in this article, coconut trunk particle/unsaturated polyester resin composites were experimentally investigated. As a pioneering study, a large range of NaOH concentrations from 2 wt% to 10 wt% (with an interval of 2 wt%) was utilized to treat the surface of the filler. Finally, 4 wt% alkali solution was found as the best content for surface modification based on the mechanical properties of the composite, including those determined by tensile, flexural, and impact test results.


Sign in / Sign up

Export Citation Format

Share Document