Ab Initio Investigations of Threshold Displacement Energies and Stability of Associated Defects in Cubic Silicon Carbide

2005 ◽  
Vol 108-109 ◽  
pp. 671-676
Author(s):  
Guillaume Lucas ◽  
Laurent Pizzagalli

Using first principles molecular dynamics simulations, we have recently determined the threshold displacement energies and the associated created defects in cubic silicon carbide. Contrary to previous studies using classical molecular dynamics, we found values close to the experimental consensus, and also created defects in good agreement with recent works on interstitials stability in silicon carbide. We have also investigated the stability of several Frenkel pairs, using transition state theory and constrained path calculations.

2007 ◽  
Vol 131-133 ◽  
pp. 247-252
Author(s):  
Laurent Pizzagalli ◽  
Guillaume Lucas

Using first principles molecular dynamics and Nudged Elastic Band calculations, we have investigated the effect of irradiation on cubic silicon carbide at the atomic scale, and in particular the formation of Frenkel pairs, and the crystal recovery after thermal treatment. Threshold displacement energies have been determined for C and Si sublattice, and the stability and structure of the formed Frenkel pairs are described. The activation energies for annealing these defects have then been computed and compared with experiments.


2009 ◽  
Vol 60-61 ◽  
pp. 315-319 ◽  
Author(s):  
W.W. Zhang ◽  
Qing An Huang ◽  
H. Yu ◽  
L.B. Lu

Molecular dynamics simulations are carried out to characterize the mechanical properties of [001] and [110] oriented silicon nanowires, with the thickness ranging from 1.05nm to 3.24 nm. The nanowires are taken to have ideal surfaces and (2×1) reconstructed surfaces, respectively. A series of simulations for square cross-section Si nanowires have been performed and Young’s modulus is calculated from energy–strain relationship. The results show that the elasticity of Si nanowires is strongly depended on size and surface reconstruction. Furthermore, the physical origin of above results is analyzed, consistent with the bond loss and saturation concept. The results obtained from the molecular dynamics simulations are in good agreement with the values of first-principles. The molecular dynamics simulations combine the accuracy and efficiency.


2012 ◽  
Vol 3 ◽  
pp. 301-311 ◽  
Author(s):  
Fabien Castanié ◽  
Laurent Nony ◽  
Sébastien Gauthier ◽  
Xavier Bouju

Background: Characterization at the atomic scale is becoming an achievable task for FM-AFM users equipped, for example, with a qPlus sensor. Nevertheless, calculations are necessary to fully interpret experimental images in some specific cases. In this context, we developed a numerical AFM (n-AFM) able to be used in different modes and under different usage conditions. Results: Here, we tackled FM-AFM image calculations of three types of graphitic structures, namely a graphite surface, a graphene sheet on a silicon carbide substrate with a Si-terminated surface, and finally, a graphene nanoribbon. We compared static structures, meaning that all the tip and sample atoms are kept frozen in their equilibrium position, with dynamic systems, obtained with a molecular dynamics module allowing all the atoms to move freely during the probe oscillations. Conclusion: We found a very good agreement with experimental graphite and graphene images. The imaging process for the deposited nanoribbon demonstrates the stability of our n-AFM to image a non-perfectly planar substrate exhibiting a geometrical step as well as a material step.


2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


Author(s):  
Toshihiro Kaneko ◽  
Kenji Yasuoka ◽  
Ayori Mitsutake ◽  
Xiao Cheng Zeng

Multicanonical molecular dynamics simulations are applied, for the first time, to study the liquid-solid and solid-solid transitions in Lennard-Jones (LJ) clusters. The transition temperatures are estimated based on the peak position in the heat capacity versus temperature curve. For LJ31, LJ58 and LJ98, our results on the solid-solid transition temperature are in good agreement with previous ones. For LJ309, the predicted liquid-solid transition temperature is also in agreement with previous result.


Sign in / Sign up

Export Citation Format

Share Document