Pattern Collapse and Particle Removal Forces of Interest to Semiconductor Fabrication Process

2009 ◽  
Vol 145-146 ◽  
pp. 47-50 ◽  
Author(s):  
Tae Gon Kim ◽  
Kurt Wostyn ◽  
Jin Goo Park ◽  
Paul W. Mertens ◽  
Ahmed A. Busnaina

The removal of particles from silicon wafers without pattern damage during fabrication process is extremely important for increasing the yield. Various physically assisted cleaning techniques such as megasonic cleaning, jet spray cleaning, and laser shock wave cleaning (LSC) have been introduced. However, most of tools show pattern damage [1]. One of the main challenges in next generation cleaning process is the particle removal without the pattern damage. As the feature size continues to decrease, the patterns are so fragile that it is hard to remove particles less than 50 nm without pattern damages. To accomplish the effective cleaning performance without the damage, the collapse force of pattern and removal force of particle should be known quantitatively. In this paper, pattern collapse forces were measured for different gate stack patterns by lateral force microscope (LFM) [2]. The particle removal mechanism of LSC was studied to find the relationship between measured collapse forces and particle removal force by LSC which has a known applied force. Finally, particle contaminated pattern wafers were cleaned by LSC with optimized process parameters to verify the relationship and to achieve the best particle removal performance without the pattern damage.

2019 ◽  
Vol 25 (5) ◽  
pp. 257-262 ◽  
Author(s):  
Jin-Su Kim ◽  
Ahmed A. Busnaina ◽  
Jin-Goo Park

2021 ◽  
Vol 314 ◽  
pp. 222-227
Author(s):  
Yukifumi Yoshida ◽  
Katsuya Akiyama ◽  
Song Zhang ◽  
Dai Ueda ◽  
Masaki Inaba ◽  
...  

Wet cleaning has become challenging as the feature size of semiconductor devices decreased to sub-5 nm nodes. One of the key challenges is removing various types and sizes of particles and contamination from complex and fragile 3D structures without pattern damage and film loss. Conventional physical cleaning methods, such as dual-fluid spray or megasonic cleaning, are being used for the particle removal process. However, in advanced device nodes, these methods induce pattern damage and film loss. In this paper, we describe a novel particle removal technology called Nanolift which uses a polymer film consisting of two organic resins with different functions and achieved high particle removal efficiency on various types and sizes of particles with no pattern damage and minimum film loss.


1996 ◽  
Vol 27 ◽  
pp. S427-S428 ◽  
Author(s):  
T.H. Kuehn ◽  
D.B. Kittelson ◽  
Y. Wu ◽  
R. Gouk

2006 ◽  
Vol 1 (4) ◽  
pp. 448-451 ◽  
Author(s):  
Chao-jun Yang ◽  
Yong-kang Zhang ◽  
Jian-zhong Zhou ◽  
Ming-xiong Ni ◽  
Jian-jun Du ◽  
...  

2021 ◽  
pp. 66-72
Author(s):  

The processes of laser-shock-wave processing of NiTi alloys with shape memory effect are investigated by the methods of dimensional analysis and finite element modeling. The dependences of the depth of the plastic zone on the peak pressure in the shock wave and the duration of the laser pulse are obtained at different peak pressures. Keywords: shape memory alloys, laser-shock-wave processing, dimensional analysis, residual stresses, plastic zone depth. [email protected]


2018 ◽  
Vol 167 ◽  
pp. 05007
Author(s):  
Aixin Feng ◽  
Yupeng Cao ◽  
Heng Wang ◽  
Zhengang Zhang

In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.


2012 ◽  
Vol 187 ◽  
pp. 269-272 ◽  
Author(s):  
Don Dussault ◽  
F. Fournel ◽  
V. Dragoi

Current work describes development, testing and verification of a single wafer megasonic cleaning method utilizing a transducer design that meets the extreme particle neutrality, Particle Removal Efficiency (PRE), and repeatability requirements of production scale wafer bonding and other applications requiring extremely low particle levels.


Sign in / Sign up

Export Citation Format

Share Document