A new parallel wrist using only revolute pairs: the 3-RUU wrist

Robotica ◽  
2001 ◽  
Vol 19 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Raffaele Di Gregorio

Only one parallel wrist with three equal legs containing just revolute pairs has been already presented in the literature. This parallel wrist is overconstrained, i.e., it involves three degrees of freedom required to orientate the end effector by using repetitions of constraints. The overconstrained mechanisms have the drawback of jamming or undergoing high internal loads when geometric errors occur. This paper presents a new parallel wrist, named 3-RUU wrist. The 3-RUU wrist is not overconstrained. It has three equal legs just involving revolute pairs and actuators adjacent to the frame and uses an architecture (3-RUU) already employed to obtain manipulators that make the end effector translate. The 3-RUU wrist kinematic analysis is addressed. This analysis shows that the new parallel wrist can reach singular configurations (translation singularities) in which the spherical constraint between end effector and frame fails. The singularity condition that makes finding all the 3-RUU wrist singular configurations possible is written in explicit form and geometrically interpreted.

2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Hamed Khakpour ◽  
Lionel Birglen ◽  
Souheil-Antoine Tahan

In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators.


1998 ◽  
Vol 01 (02) ◽  
pp. 247-282 ◽  
Author(s):  
Enlin Pan

When bond prices can be described in a state-space framework, the no-arbitrage condition and the positivity of forward prices together impose such a tight restriction that only one functional form for the zero-coupon term structure is possible. The explicit form of the term structure is derived, without any parameters. Thus it is unnecessary and even counter-productive to try to specify the nature of interest rate dynamics. Bond pricing has exactly three degrees of freedom.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Sen Qian ◽  
Kunlong Bao ◽  
Bin Zi ◽  
W. D. Zhu

Abstract This paper presents a new trajectory planning method based on the improved quintic B-splines curves for a three degrees-of-freedom (3-DOF) cable-driven parallel robot (CDPR). First, the conditions of positive cables’ tension are expressed in terms of the position and acceleration constraints of the end-effector. Then, an improved B-spline curve is introduced, which is employed for generating a pick-and-place path by interpolating a set of given via-points. Meanwhile, by expressing the position and acceleration of the end-effector in terms of the first and second derivatives of the improved B-spline, the cable tension constraints are described in the form of B-spline parameters. According to the properties of the defined pick-and-place path, the proposed motion profile is dominated by two factors: the time taken for the end-effector to pass through all the via-points and the ratio between the nodes of B-spline. The two factors are determined through multi-objective optimization based on the efficiency coefficient method. Finally, experimental results on a 3-DOF CDPR show that the improved B-spline exhibits overall superior behavior in terms of velocity, acceleration, and cables force compared with the traditional B-spline. The validity of the proposed trajectory planning method is proved through the experiments.


Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 405-413 ◽  
Author(s):  
Iman Ebrahimi ◽  
Juan A. Carretero ◽  
Roger Boudreau

SUMMARYIn this work, the 3-RPRR, a new kinematically redundant planar parallel manipulator with six-degrees-of-freedom, is presented. First, the manipulator is introduced and its inverse displacement problem discussed. Then, all types of singularities of the 3-RPRR manipulator are analysed and demonstrated. Thereafter, the dexterous workspace is geometrically obtained and compared with the non-redundant 3-PRR planar parallel manipulator. Finally, based on a geometrical measure of proximity to singular configurations and the condition number of the manipulators' Jacobian matrices, actuation schemes for the manipulators are obtained. Different actuation schemes for a given path are obtained and the quality of their actuation schemes are compared. It is shown that the proposed manipulator is capable of following a path while avoiding the singularities.


Author(s):  
Nicola Scuor ◽  
Paolo Gallina ◽  
Marco Giovagnoni

This paper presets three degrees of freedom (DOF) piezoelectric micropositioning stage. The stage is composed of a stack of piezodisk bender actuators actuated in such a way to prevent the end-effector from rotating; this way the end-effector can only translate along the x, y, and z axes. Thanks to its snake-like configuration, the system is capable of large displacements (of the order of 50 μm) with low driving voltages (of the order of 100 V). Several lumped-mass static and dynamic models of the device have been implemented. Static experimental results, which are in agreement with simulation data, confirmed the performances of the device. A dynamic model showed the natural frequencies of the mechanism. Also dynamic tests have been conducted in order to validate the dynamic model.


2006 ◽  
Vol 129 (12) ◽  
pp. 1243-1250 ◽  
Author(s):  
Oscar Salgado ◽  
Oscar Altuzarra ◽  
Enrique Amezua ◽  
Alfonso Hernández

A parallelogram-based 4 degrees-of-freedom parallel manipulator is presented in this paper. The manipulator can generate the so-called Schönflies motion that allows the end effector to translate in all directions and rotate around an axis parallel to a fixed direction. The theory of group of displacements is applied in the synthesis of this manipulator, which employs parallelograms in every limb. The planar parallelogram kinematic chain provides a high rotational capability and an improved stiffness to the manipulator. This paper shows the kinematic analysis of the manipulator, including the closed-form resolution of the forward and inverse position problems, the velocity, and the singularity analysis. Finally, a prototype of the manipulator, adding some considerations about its singularity-free design, and some technical applications in which the manipulator can be used are presented.


Author(s):  
Salua Hamaza ◽  
Patrice Lambert ◽  
Marco Carricato ◽  
Just Herder

This paper explores the fundamentals of parallel robots with configurable platforms (PRCP), as well as the design and the kinematic analysis of those. The concept behind PRCP is that the rigid (non-configurable) end-effector is replaced by a closed-loop chain, the configurable platform. The use of a closed-loop chain allows the robot to interact with the environment from multiple contact points on the platform, which reflects the presence of multiple end-effectors. This results in a robot that successfully combines motion and grasping capabilities into a structure that provides an inherent high stiffness. This paper aims to introduce the QuadroG robot, a 4 degrees of freedom PRCP which finely merges planar motion together with grasping capabilities.


2015 ◽  
Vol 20 (1) ◽  
pp. 5-18 ◽  
Author(s):  
J. Bałchanowski

Abstract This paper presents a method of numerical modelling of parallel mechanisms with clearances in their kinematic pairs taken into account. The pairs with clearances are modelled as shape connections based on constraints in the form of contact interactions. Using the created models simulations were run to determine the positioning errors of the links in a parallel mechanism with three degrees of freedom (MR2120). In particular, the accuracy of positioning the links close to the mechanism singular configurations was studied.


Author(s):  
Ste´phane Caro ◽  
Philippe Wenger ◽  
Fouad Bennis ◽  
Damien Chablat

This paper presents a sensitivity analysis of the Orthoglide, a 3-DOF translational Parallel Kinematic Machine. Two complementary methods are used to analyze its sensitivity to its dimensional and angular variations. First, a linkage kinematic analysis method is used to have a rough idea of the influence of the dimensional variations on the location of the end-effector, and shows that the variations in design parameters of the same type from one leg to another one have the same influence on the end-effector. However, this method does not allow the designer to know the influence of the variations in the parallelograms. Thus, a differential vector method is used to study the influence of the dimensional and angular variations in the parts of the manipulator, and particularly the variations in the parallelograms, on the position and orientation of the end-effector. It turns out that the isotropic kinematic configuration of the manipulator is the least sensitive one to its geometrical variations, contrary to the closest configurations to its kinematic singular configurations, which are the most sensitive to geometrical variations.


Sign in / Sign up

Export Citation Format

Share Document