Magnetic Iron Oxide Nanoparticles as Contrast Agents: Hydrothermal Synthesis, Characterization and Properties

2015 ◽  
Vol 232 ◽  
pp. 111-145 ◽  
Author(s):  
Tokeer Ahmad ◽  
Ruby Phul

Superparamagnetic Iron oxide nanoparticles (SPIONs) have fascinated researchers due to their vast applications in biomedical fields such as magnetic resonance imaging, cell sorting, hyperthermia, drug delivery etc. The special properties of SPIONs depend on the method of synthesis and surface modification. Among various synthetic protocols, hydrothermal method has attracted much attention due to simplicity, uniformity and excellent magnetic properties of iron oxide nanoparticles. Magnetic properties of SPIONs could be tuned by controlling the size and shape of the particles as well as by the surface modification. Low colloidal stability and high hydrophobic nature of SPIONs result in aggregation of the particles which could be avoided by surface modification of the SPIONs using various capping agents. The size, shape and surface environment of SPIONs can also be controlled by the surface coating. SPIONs are promising contrast agents due to their non-poisonous nature, biocompatibility and large surface area. The biocompatibility of SPIONs is enhanced by the surface coating/modification. The present review focuses on the hydrothermal synthesis of SPIONs and their characterization using various techniques and the applications of SPIONs in the MRI.Table of Contents

2021 ◽  
Vol 22 (12) ◽  
pp. 6235
Author(s):  
Abdulkader Baki ◽  
Amani Remmo ◽  
Norbert Löwa ◽  
Frank Wiekhorst ◽  
Regina Bleul

Colloidal stability of magnetic iron oxide nanoparticles (MNP) in physiological environments is crucial for their (bio)medical application. MNP are potential contrast agents for different imaging modalities such as magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Applied as a hybrid method (MRI/MPI), these are valuable tools for molecular imaging. Continuously synthesized and in-situ stabilized single-core MNP were further modified by albumin coating. Synthesizing and coating of MNP were carried out in aqueous media without using any organic solvent in a simple procedure. The additional steric stabilization with the biocompatible protein, namely bovine serum albumin (BSA), led to potential contrast agents suitable for multimodal (MRI/MPI) imaging. The colloidal stability of BSA-coated MNP was investigated in different sodium chloride concentrations (50 to 150 mM) in short- and long-term incubation (from two hours to one week) using physiochemical characterization techniques such as transmission electron microscopy (TEM) for core size and differential centrifugal sedimentation (DCS) for hydrodynamic size. Magnetic characterization such as magnetic particle spectroscopy (MPS) and nuclear magnetic resonance (NMR) measurements confirmed the successful surface modification as well as exceptional colloidal stability of the relatively large single-core MNP. For comparison, two commercially available MNP systems were investigated, MNP-clusters, the former liver contrast agent (Resovist), and single-core MNP (SHP-30) manufactured by thermal decomposition. The tailored core size, colloidal stability in a physiological environment, and magnetic performance of our MNP indicate their ability to be used as molecular magnetic contrast agents for MPI and MRI.


2021 ◽  
Vol 3 ◽  
Author(s):  
Fatemeh Ahmadpoor ◽  
Atif Masood ◽  
Neus Feliu ◽  
Wolfgang J. Parak ◽  
Seyed Abbas Shojaosadati

Iron oxide nanoparticles (IONPs) with acceptable biocompatibility and size-dependent magnetic properties can be used as efficient contrast agents in magnetic resonance imaging (MRI). Herein, we have investigated the impact of particle size and surface coating on the proton relaxivity of IONPs, as well as engineering of small IONPs' surface coating as a strategy for achieving gadolinium-free contrast agents. Accordingly, polymer coating using poly(isobutylene-alt-maleic anhydride) (PMA) with overcoating of the original ligands was applied for providing colloidal stability to originally oleic acid–capped IONPs in aqueous solution. In case of replacement of the original ligand shell, the polymer had been modified with dopamine. Furthermore, the colloidal stability of the polymer-coated IONPs was evaluated in NaCl and bovine serum albumin (BSA) solutions. The results indicate that the polymer-coated IONPs which involved replacement of the original ligands exhibited considerably better colloidal stability and higher proton relaxivity in comparison to polymer-coated IONPs with maintained ligand shell. The highest r2/r1 we obtained was around 300.


2019 ◽  
Vol 56 (2) ◽  
pp. 729-743
Author(s):  
Ismayadi Ismail ◽  
Abdul Halim Abdullah ◽  
Azdiya Suhada Abdul Arifin ◽  
Idza Riati Ibrahim ◽  
Farah Nabilah Shafiee ◽  
...  

2016 ◽  
Vol 3 (4) ◽  
pp. 754-767 ◽  
Author(s):  
Ya-Qi Zhang ◽  
Ralf Dringen ◽  
Charlotte Petters ◽  
Wiebke Rastedt ◽  
Jan Köser ◽  
...  

Investigations on colloidal stability and ecotoxicological effects of DMSA-coated and uncoated IONP with Raphidocelis, Daphnia and Lemna.


2013 ◽  
Vol 12 (06) ◽  
pp. 1330002 ◽  
Author(s):  
K. SHAMILI ◽  
E. M. RAJESH ◽  
R. RAJENDRAN ◽  
S. R. MADHAN SHANKAR ◽  
M. ELANGO ◽  
...  

Magnetic iron oxide nanoparticles are promising material for various biological applications. In the recent decades, magnetic iron oxide nanoparticles (MNPs) have great attention in biomedical applications such as drug delivery, magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH). This review focuses on the colloidal stability and monodispersity properties of MNPs, which pay more attention toward biomedical applications. The simplest and the most promising method for the synthesis of MNPs is co-precipitation. The biocompatible MNPs are more interested in MRI application. This review also apportions synthesis, characterization and applications of MNP in biological and biomedical as theranostics and imaging.


Author(s):  
John M. Melnyczuk ◽  
Soubantika Palchoudhury

Iron oxide nanoparticles show great promise in bio-applications like drug delivery, magnetic resonance imaging, and hyperthermia. This is because the size of these magnetic nanoparticles is comparable to biomolecules and the particles can be removed via normal iron metabolic pathways. These nanoparticles are also attractive for industrial separations and catalysis because they can be magnetically recovered. However, the size, morphology, and surface coating of the iron oxide nanoparticles greatly affect their magnetic properties and biocompatibility. Therefore, nanoparticles with tunable characteristics are desirable. This chapter elaborates the synthesis techniques for the formation of iron oxide nanoparticles with good control over reproducibility, surface and magnetic properties, and morphology. The well-known co-precipitation and thermal decomposition methods are detailed in this chapter. The surface modification routes and characterization of these nanoparticles are also discussed. The chapter will be particularly useful for engineering/science graduate students and/or faculty interested in synthesizing iron oxide nanoparticles for specific research applications.


2018 ◽  
Vol 6 (6) ◽  
pp. 1280-1290 ◽  
Author(s):  
Y. Bao ◽  
J. A. Sherwood ◽  
Z. Sun

This review discusses several aspects regarding ultrasmall magnetic nanoparticles asT1contrast agents, including synthesis, parameters affectingT1, and applications.


Soft Matter ◽  
2021 ◽  
Author(s):  
Mostafa Ahmadi ◽  
Donya Monji ◽  
Faramarz Afshar Taromi

Bio-inspire surface modification of iron oxide nanoparticles with dopamine promotes the colloidal stability and integrates new transient bonds with PVA chains.


Sign in / Sign up

Export Citation Format

Share Document