Surface Optimization of Random Pyramid Textured Silicon Substrates for Improving Heterojunction Solar Cells

2016 ◽  
Vol 255 ◽  
pp. 338-343 ◽  
Author(s):  
Bert Stegemann ◽  
Jan Kegel ◽  
Lars Korte ◽  
Heike Angermann

Key steps in the fabrication of high-efficiency a-Si:H/c-Si heterojunction solar cells are the controlled pyramid texturing of the c-Si substrates to minimize reflection losses and the subsequent passivation by deposition of a high-quality a-Si:H layer to reduce recombination losses. This contribution reviews our recent results on the optimization of the wet-chemical texturing of crystalline Si wafers for the preparation of heterojunction solar cells with respect to low reflection losses, low recombination losses and long minority carrier lifetimes. It is demonstrated, that by joint optimization of both saw damage etch and texture etch the optical and electronic properties of the resulting pyramid morphology can be controlled. Effective surface passivation and thus long minority charge carrier lifetimes are achieved by deposition of intrinsic amorphous Si ((i) a-Si:H) layers. It is shown, that optimized (i) a-Si:H deposition parameters for planar Si (111) wafers can be transferred to a-Si:H layer deposition on random pyramid textured Si (100) wafers. Statistical analysis of the pyramid size distribution revealed that a low fraction of small pyramids leads to longer minority charge carrier lifetimes and, thus, a higher Voc potential for solar cells.

Author(s):  
Muhammad Quddammah Khokhar ◽  
Shahzad Qamar Hussain ◽  
Sanchari Chowdhury ◽  
Muhammad Aleem Zahid ◽  
Pham Duy Phong ◽  
...  

Abstract Numerical simulation and experimental techniques were used to investigate lithium fluoride (LiFx) films as an electron extraction layer for the application of silicon heterojunction (SHJ) solar cells, with a focus on the paths toward excellent surface passivation and superior efficiency. The presence of a 7 nm thick hydrogenated intrinsic amorphous silicon (a-Si:H(i)) passivation layer along with thermally evaporated 4 nm thick LiFx resulted in outstanding passivation properties and suppresses the recombination of carriers. As a result, minority carrier lifetime (τeff) as well as implied open-circuit voltage (iVoc) reached up 933 μs and iVoc of 734 mV, accordingly at 120°C annealing temperature. A detailed simulated study was performed for the complete LiFx based SHJ solar cells to achieve superior efficiency. Optimized performance of SHJ solar cells using a LiFx layer thickness of 4 nm with energy bandgap (Eg) of 10.9 eV and the work function of 3.9 eV was shown as: Voc=745.7 mV, Jsc=38.21 mA/cm2, FF=82.17%, and =23.41%. Generally, our work offers an improved understanding of the passivation layer, electron extraction layer, and their combined effects on SHJ solar cells via simulation.


Author(s):  
Manas R. Samantaray ◽  
Prashant Kumar Gautam ◽  
Dhriti Sundar Ghosh ◽  
Nikhil Chander

Abstract Carrier selective contacts (CSC) have the potential to lower the cost of photovoltaic (PV) cells. In the present work p-Si/TiO2 heterojunction solar cells have been fabricated using titanium dioxide (TiO2) as an electron-selective layer. Thin uniform anatase TiO2 films have been deposited using a commercially viable spray deposition technique over large area Si substrates. With a simple architecture of Al (200 nm fingers)/Al (15 nm thin film)/TiO2/c-Si(p)/Ag (200 nm), a highest conversion efficiency of 1.56 % has been achieved for the TiO2 carrier selective contact based solar cell with an active area of ~3.84 cm2. The minority carrier lifetime value of the TiO2 coated Si wafer was found to be less than that of the uncoated wafer, indicating the inability of the anatase TiO2 layer to provide surface passivation. Suns-VOC measurements yielded comparable values of the implied open circuit voltage for both the uncoated and the TiO2 coated Si wafers. Spray deposition technique can be used for scalable fabrication of carrier selective contact based heterojunction solar cells.


2012 ◽  
Vol 187 ◽  
pp. 345-348 ◽  
Author(s):  
Adrien Danel ◽  
Florent Souche ◽  
Thomas Nolan ◽  
Yannick Le Tiec ◽  
P.J. Ribeyron

Amorphous/crystalline silicon heterojunction solar cells are commonly made by low temperature deposition of front and back side thin films on bare H-passivated Si wafers, obtained by HF last processes. This work discusses the impact of HF last step parameters on cell performance, considering textured and cleaned Si (100) wafers. A complete native oxide removal is mandatory and achieved in a short time (< 5 min) by HF concentration higher than 1% (by weight). Above 1%, surface passivation and cells performance slightly increases with the concentration. The best process time is found to be the minimum time to deoxidize textured wafers, as seen by a good dewetting. For [H > 2% this is less than 1 min. Longer process times slightly degrade surface passivation. Post rinse and drying, provided they do not reoxydize the surface, were seen to have no impact. The delay between the HF last and deposition steps is critical and depends on the efficiency of the cleaning before the HF last. With a high performance cleaning, leading to a very good surface passivation (< 10 cm/s surface recombination velocity), 30 min delay has no impact and 90 min leads to about 5% relative degradation of cell performance. Regarding the HF cleanliness, HCl spiking is an efficient way to enhance robustness of surface passivation keeping < 10 cm/s values when the metallic contamination, including Cu, is in the sub 50 ppb range.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4849
Author(s):  
Chan Hyeon Park ◽  
Jun Yong Kim ◽  
Shi-Joon Sung ◽  
Dae-Hwan Kim ◽  
Yun Seon Do

In this paper, we propose an optimized structure of thin Cu(In,Ga)Se2 (CIGS) solar cells with a grating aluminum oxide (Al2O3) passivation layer (GAPL) providing nano-sized contact openings in order to improve power conversion efficiency using optoelectrical simulations. Al2O3 is used as a rear surface passivation material to reduce carrier recombination and improve reflectivity at a rear surface for high efficiency in thin CIGS solar cells. To realize high efficiency for thin CIGS solar cells, the optimized structure was designed by manipulating two structural factors: the contact opening width (COW) and the pitch of the GAPL. Compared with an unpassivated thin CIGS solar cell, the efficiency was improved up to 20.38% when the pitch of the GAPL was 7.5–12.5 μm. Furthermore, the efficiency was improved as the COW of the GAPL was decreased. The maximum efficiency value occurred when the COW was 100 nm because of the effective carrier recombination inhibition and high reflectivity of the Al2O3 insulator passivation with local contacts. These results indicate that the designed structure has optimized structural points for high-efficiency thin CIGS solar cells. Therefore, the photovoltaic (PV) generator and sensor designers can achieve the higher performance of photosensitive thin CIGS solar cells by considering these results.


Sign in / Sign up

Export Citation Format

Share Document