Evaluation of Acoustic Emission Events Generated at Three Point Bending of Different Concrete Specimens by Spectral Analysis

2016 ◽  
Vol 258 ◽  
pp. 485-488
Author(s):  
Lubos Pazdera ◽  
Libor Topolář ◽  
Petr Daněk ◽  
Jaroslav Smutny ◽  
Karel Mikulasek

The paper aims to the determine of the mechanical properties of the concrete specimens at three-point bending test by application of the Acoustic Emission Method. Recorded acoustic emission events generated during three-point loading have been chosen. Some frequency and joint time-frequency methods are applied to these records. Time series as acoustic emission events may be analyzed in the time, frequency, and/or time-frequency domains. The selection is based on the type of the signal in question, on the type of analysis to be used or the result achieved. In many applications, direct evaluation of the time-amplitude representation is neither easy nor advantageous. The individual mixtures were different in cement dosage and water-cement ratio based on how much the amount of cement was increased while maintaining consistency S2 according to EN 206.

2016 ◽  
Vol 837 ◽  
pp. 198-202
Author(s):  
Luboš Pazdera ◽  
Libor Topolář ◽  
Tomáš Vymazal ◽  
Petr Daněk ◽  
Jaroslav Smutny

The aim of the paper is focused on the analysis of the mechanical properties of the concrete specimens with plasticizer at three point bending test by the signal analysis of the acoustic emission signal. The evaluations were compared the measurement and the results obtained with theoretical presumptions. The Joint Time Frequency Analysis applied on measurement data and its evaluation is described. It is well known that the Acoustic Emission Method is a very sensitive method to determine active cracks into structure. However, evaluation of acoustic emission signals is very difficult. A non-traditional method was used to signal analysis of burst acoustic emission signals recorded during three point bending test.


2017 ◽  
Vol 908 ◽  
pp. 88-93 ◽  
Author(s):  
Libor Topolář ◽  
Richard Dvořák ◽  
Luboš Pazdera

One of the advantages of concrete over other building materials is its inherent fire-resistive properties. The concrete structural components still must be able to withstand dead and live loads without collapse even though the rise in temperature causes a decrease in the strength and modulus of elasticity for concrete and steel reinforcement. In addition, fully developed fires cause expansion of structural components and the resulting stresses and strains must be resisted. This paper reports the results of measurements by Acoustic Emission method during three-point bending test on concrete specimens. The Acoustic emission method is a non-destructive technique used widely for structural health monitoring purposes of structures. The sensors are mounted by beeswax on the surface of the material or structure to record the motion of the surface under the elastic excitation of the cracking sources. The concrete specimens were heated in a programmable laboratory furnace at a heating rate of 5 °C/min. The specimens were loaded at six temperatures, 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C maintained for 60 minutes. The results are obtained in the laboratory.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2181 ◽  
Author(s):  
Tomasz Gorzelańczyk ◽  
Krzysztof Schabowicz

This paper presents the results of investigations into the effect of freeze–thaw cycling on the failure of fibre-cement boards and on the changes taking place in their structure. Fibre-cement board specimens were subjected to one and ten freeze–thaw cycles and then investigated under three-point bending by means of the acoustic emission method. An artificial neural network was employed to analyse the results yielded by the acoustic emission method. The investigations conclusively proved that freeze–thaw cycling had an effect on the failure of fibre-cement boards, as indicated mainly by the fall in the number of acoustic emission (AE) events recognized as accompanying the breaking of fibres during the three-point bending of the specimens. SEM examinations were carried out to gain better insight into the changes taking place in the structure of the tested boards. Interesting results with significance for building practice were obtained.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 656 ◽  
Author(s):  
Krzysztof Schabowicz ◽  
Tomasz Gorzelańczyk ◽  
Mateusz Szymków

This paper presents the results of research aimed at identifying the degree of degradation of fibre-cement boards exposed to fire. The fibre-cement board samples were initially exposed to fire at various durations in the range of 1–15 min. The samples were then subjected to three-point bending and were investigated using the acoustic emission method. Artificial neural networks (ANNs) were employed to analyse the results yielded by the acoustic emission method. Fire was found to have a degrading effect on the fibres contained in the boards. As the length of exposure to fire increased, the fibres underwent gradual degradation, which was reflected in a decrease in the number of acoustic emission (AE) events recognised by the artificial neural networks as accompanying the breaking of the fibres during the three-point bending of the sample. It was shown that it is not sufficient to determine the degree of degradation of fibre-cement boards solely on the basis of bending strength (MOR).


2015 ◽  
Vol 1124 ◽  
pp. 231-236
Author(s):  
Libor Topolář ◽  
Luboš Pazdera

This paper reports the analysis of acoustic emission signals captured during three-point bending fracture tests of concrete specimens with different mixture composition. Acoustic emission method is an experimental tool well suited for monitoring fracture processes in material. The typical acoustic emission patterns were identified in the acoustic emission records for three different mixtures to further describe the under-the-stress behaviour and failure development. An understanding of microstructure–performance relationships is the key to true understanding of material behaviour. The acoustic emission results are accompanied by fracture parameters determined via evaluation of load versus deflection diagrams recorded during three-point bending fracture tests.


2016 ◽  
Vol 837 ◽  
pp. 152-156 ◽  
Author(s):  
Libor Topolář ◽  
Kristýna Timcakova ◽  
Petr Misak ◽  
Luboš Pazdera

Concrete hardening and setting processes are the most critical phases during construction work, influencing the properties of concrete structure. For this reason applying non-destructive testing in the early age of concrete lifetime can be useful. Acoustic emission method is a powerful tool for determination of lifetime concrete structures. Nevertheless, its application in civil engineering area is not easy because many building structures are inhomogeneous. This method can describe material changes during concrete lifetime. Acoustic Emission Method monitors concrete structure continuously. Changes in the whole concrete structure are recorded. The acoustic emission phenomenon is directly associated with nucleation of cracks in building materials, therefore the changes result from the volumetric expansion causing formation micro and macro cracking in structure, which we can recognize. Application of Acoustic Emission Method during concrete hardening and setting with different water-cement ratio will be the aim of this article and his influence on parameters of acoustic emission. A comprehension of microstructure-performance relationships is the key to true understanding of material behaviour.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 786 ◽  
Author(s):  
Michal Šofer ◽  
Jakub Cienciala ◽  
Martin Fusek ◽  
Pavel Pavlíček ◽  
Richard Moravec

The acoustic emission method has been adopted for detection of damage mechanisms in carbon-fiber-reinforced polymer composite tubes during the three-point bending test. The damage evolution process of the individual samples has been monitored using the acoustic emission method, which is one of the non-destructive methods. The obtained data were then subjected to a two-step technique, which combines the unsupervised pattern recognition approach utilizing the short-time frequency spectra with the boundary curve enabling the already clustered data to be additionally filtered. The boundary curve identification has been carried out on the basis of preliminary tensile tests of the carbon fiber sheafs, where, by overlapping the force versus time dependency by the acoustic emission activity versus time dependency, it was possible to identify the boundary which will separate the signals originating from the fiber break from unwanted secondary sources. The application of the presented two-step method resulted in the identification of the failure mechanisms such as matrix cracking, fiber break, decohesion, and debonding. Besides the comparison of the results with already published research papers, the study presents the comprehensive parametric acoustic emission signal analysis of the individual clusters.


Sign in / Sign up

Export Citation Format

Share Document