scholarly journals Damage Analysis of Composite CFRP Tubes Using Acoustic Emission Monitoring and Pattern Recognition Approach

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 786 ◽  
Author(s):  
Michal Šofer ◽  
Jakub Cienciala ◽  
Martin Fusek ◽  
Pavel Pavlíček ◽  
Richard Moravec

The acoustic emission method has been adopted for detection of damage mechanisms in carbon-fiber-reinforced polymer composite tubes during the three-point bending test. The damage evolution process of the individual samples has been monitored using the acoustic emission method, which is one of the non-destructive methods. The obtained data were then subjected to a two-step technique, which combines the unsupervised pattern recognition approach utilizing the short-time frequency spectra with the boundary curve enabling the already clustered data to be additionally filtered. The boundary curve identification has been carried out on the basis of preliminary tensile tests of the carbon fiber sheafs, where, by overlapping the force versus time dependency by the acoustic emission activity versus time dependency, it was possible to identify the boundary which will separate the signals originating from the fiber break from unwanted secondary sources. The application of the presented two-step method resulted in the identification of the failure mechanisms such as matrix cracking, fiber break, decohesion, and debonding. Besides the comparison of the results with already published research papers, the study presents the comprehensive parametric acoustic emission signal analysis of the individual clusters.

2016 ◽  
Vol 258 ◽  
pp. 485-488
Author(s):  
Lubos Pazdera ◽  
Libor Topolář ◽  
Petr Daněk ◽  
Jaroslav Smutny ◽  
Karel Mikulasek

The paper aims to the determine of the mechanical properties of the concrete specimens at three-point bending test by application of the Acoustic Emission Method. Recorded acoustic emission events generated during three-point loading have been chosen. Some frequency and joint time-frequency methods are applied to these records. Time series as acoustic emission events may be analyzed in the time, frequency, and/or time-frequency domains. The selection is based on the type of the signal in question, on the type of analysis to be used or the result achieved. In many applications, direct evaluation of the time-amplitude representation is neither easy nor advantageous. The individual mixtures were different in cement dosage and water-cement ratio based on how much the amount of cement was increased while maintaining consistency S2 according to EN 206.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Justyna Zapała-Sławeta ◽  
Grzegorz Świt

The study analyzed the possibility of using the acoustic emission method to analyse the reaction of alkali with aggregate in the presence of lithium nitrate. Lithium nitrate is a chemical admixture used to reduce adverse effects of corrosion. The tests were carried out using mortars with reactive opal aggregate, stored under the conditions defined by ASTM C227. The acoustic activity of mortars with a corrosion inhibitor was referred to linear changes and microstructure of specimens in the initial reaction stages. The study found a low acoustic activity of mortars with lithium nitrate. Analysis of characteristic parameters of acoustic emission signals, combined with the observation of changes in the microstructure, made it possible to describe the corrosion processes. As the reaction progressed, signals with different characteristics were recorded, indicating aggregate cracking at the initial stage of the reaction, followed by cracking of the cement paste. The results, which were referred to the acoustic activity of reference mortars, confirmed that the reaction of opal aggregate with alkali was mitigated in mortars with lithium nitrate, and the applied acoustic emission method enabled the detection and monitoring of ASR progress.


Sign in / Sign up

Export Citation Format

Share Document