Effect of Heat Treatment Temperature-Rate Parameters on Structure and Complex of Physical-Mechanical Properties in VST5553 Titanium Alloy Rod Semi-Finished Goods

2017 ◽  
Vol 265 ◽  
pp. 785-788
Author(s):  
A.V. Zhelnina ◽  
A.G. Illarionov ◽  
M.S. Kalienko

VST5553 titanium alloy is high strength (α + β) - transition alloy which is used for the production of heavy-duty parts [1]. It is known [2], that the cooling rate changing during the heat treatment can change the phases ratio in the alloy. With regards to the VST5553 alloy, this may be due to different cooling rates over the cross section of large-sized semi-finished goods. This in turn affects a complex of properties. Thus, it is necessary to know the effect of the cooling rate of two-phase region on the structure and properties, particularly the VST5553 alloy. However, the research in this area is not sufficient enough. The present study is devoted to this issue.

2021 ◽  
Vol 1032 ◽  
pp. 152-156
Author(s):  
Peng Lei ◽  
Shu Cheng Dong ◽  
Guang Yu Ma ◽  
Tuo Cheng ◽  
O.M. Ivasishin

TC16 titanium alloy is a martensite α+β two-phase high strength titanium alloy, which can improve its structure and enhance properties through heat treatment. Effect of annealing process on microstructure and tensile properties of TC16 titanium alloy was investigated using optical microscope, scanning electron microscope and universe tensile test machine. The results show that when annealed at 720°C for 4h then furnace cooling to ambient temperature, the tensile strength of the TC16 alloy reaches nearly 900MPa,the elongation reaches 19.6% and the reduction of area reaches 65%, which present a good comprehensive performance.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4415
Author(s):  
Yuri Shchitsyn ◽  
Maksim Kartashev ◽  
Ekaterina Krivonosova ◽  
Tatyana Olshanskaya ◽  
Dmitriy Trushnikov

The paper deals with the main formation patterns of structure and properties of a titanium alloy of the Ti-6Al-4V system during additive manufacturing using cold metal transfer (CMT) wire deposition. The work aims to find the optimal conditions for layer-by-layer deposition, which provides the high physical and mechanical properties of the titanium alloy of the Ti-6Al-4V system hybrid, additively manufactured using CMT deposition. Particular attention is paid to interpass forging during the layered printing of the product. Additionally, we investigate how the heat treatment affects the structure and properties of the Ti-6Al-4V alloy that has been CMT-deposited, both with and without forging. These studies have shown that the hybrid multilayer arc deposition technology, with interpass strain hardening, allows the use of high temperature and high technology titanium alloys to obtain products of a required geometric shape. It has been proven that the interpass deformation effect during CMT deposition contributes to a significant decrease in the sizes of the primary β-grains. In addition, forging enhances the effect of microstructure refinement, which is associated with phase recrystallization in deformed areas. It is shown that the heat treatment leads not only to a change in the morphology of the phases but also to additional phase formations in the structure of the Ti-6Al-4V-deposited metal while the mechanism is realized and consists of the gradual decomposition of the martensitic α′-phase and the formation of a dispersive α2-phase. This structure formation process is accompanied by the dispersion hardening of the α-phase. The strength characteristics of the Ti-6Al-4V alloy obtained using layer-by-layer CMT with forging are given; they exceed the strength level of materials obtained with the traditional technologies of pressure treatment, and there is no decrease in plasticity characteristics. The use of the subsequent heat treatment makes it possible to increase the ductility characteristics of the deposited and forged Ti-6Al-4V material by 1.5–2 times without strength loss.


2014 ◽  
Vol 59 (4) ◽  
pp. 1713-1716 ◽  
Author(s):  
R. Dąbrowski

Abstract Mechanical properties of the two-phase titanium alloy Ti6Al7Nb, after the heat treatment based on soaking this alloy in the α + β range, cooling in water or oil and ageing at two selected temperatures, were determined in the hereby paper. The alloy mechanical properties were determined in tensile and impact tests, supported by the fractographic analysis of fractures. In addition, its hardness was measured and the analysis of changes occurring in the microstructure was performed for all variants of the alloy heat treatment. Regardless of the applied cooling rate of the alloy, from a temperature of 970°C followed by ageing at 450 and 650°C, none essential changes were noticed in its microstructure. It was shown that applying less intensive cooling medium (oil) instead of water (before tempering) decreases strength properties indicators, i.e. tensile strength and yield strength as well as hardness (only slightly). The decrease of the above mentioned indicators is accompanied by an increase of an elongation and impacts strength. Fractures of tensile and impact tests are of a ductile character regardless of the applied heat treatment.


Author(s):  
I. R. Kozlova ◽  
E. V. Chudakov ◽  
N. V. Tretyakova ◽  
Yu. M. Markova ◽  
E. A. Vasilieva

The paper investigates the possibility of increasing the strength of the experimental high-alloyed titanium alloy due to various methods of thermal action, leading to a change in its phase composition and intragrain structure. Changes in mechanical properties in correlation with the change in structure in the annealed, tempered and heat-hardened state are reviewed. It is shown that by controlling phase transformations in highalloyed two-phase titanium alloys, it is possible to realize high-strength state with satisfactory plastic characteristics. The optimal complex of mechanical properties is provided by heat treatment, which leads to the creation of a two-phase heterogeneous structure with a developed bimodal intragrain structure.


2017 ◽  
Vol 2017 (2) ◽  
pp. 11-16 ◽  
Author(s):  
S.V. Akhonin ◽  
◽  
V.Yu. Belous ◽  
A.Yu. Severin ◽  
V.A. Berezos ◽  
...  

2016 ◽  
Vol 879 ◽  
pp. 1828-1833 ◽  
Author(s):  
Xiao Yun Song ◽  
Wen Jing Zhang ◽  
Teng Ma ◽  
Wen Jun Ye ◽  
Song Xiao Hui

Ti-6Al-3Sn-3Zr-3Mo-3Nb-1W-0.2Si (BTi-6431S) alloy is a novel two-phase high temperature titanium alloy for short-term using in aerospace industry up to 700°C. The effects of heat treatment on the microstructure evolution of BTi-6431S alloy bar were investigated through optical microscopy (OM), X-ray diffraction (XRD), electron probe microanalysis (EPMA) and transmission electron microscopy (TEM). The results show that solution treatment in β region at 1010°C followed by water quenching results in the formation of orthorhombic martensite α′′ phase, while air cooling leads to the formation of hexagonal martensite α′ phase. When solution-treated in α+β phase field at temperatures from 900°C to 980°C following by water quenching, the content of primary α phase decreases with the increase of heat treatment temperature. For the alloy subjected to identical heat treatment, the content of Al in α phase is much higher than that in β phase, while the contents of Nb, Mo and W elements in α phase are much less than those in β phase.


2019 ◽  
Vol 298 ◽  
pp. 00049
Author(s):  
Svetlana Skvortsova ◽  
Galina Gurtovaya ◽  
Maria Afonina ◽  
Natalya Ruchina ◽  
Gulnara Zaynetdinova

The article shows the possibility of creating structure of the same type and, accordingly, a close level of properties in hot-rolled semi-finished products of the VST2K alloy with different chemical composition by means of heat treatment.


2018 ◽  
Vol 927 ◽  
pp. 119-125 ◽  
Author(s):  
V.P. Prilutsky ◽  
S.V. Akhonin ◽  
S.L. Schwab ◽  
I.K. Petrychenko

An important part in affecting the properties of the titanium alloy VT22 is a heat treatment (HT). Annealing of welded joints of the alloy also works as strengthening HT. Depending on the heating temperature, duration of annealing and the cooling rate, different combinations of strength and ductility could be obtained. Annealing is carried out in the VT22 alloy two-phase region (750 - 850 °C) followed by direct or stepwise cooling. This heat treatment results in a maximum heterogeneity of the structure with nearly an equal amount of α and β phases. It also provides a tensile strength of 1100 - 1300 MPa.


2016 ◽  
Vol 25 (3) ◽  
pp. 734-743 ◽  
Author(s):  
Jianwei Xu ◽  
Weidong Zeng ◽  
Zhiqiang Jia ◽  
Xin Sun ◽  
Yawei Zhao

Carbon ◽  
2007 ◽  
Vol 45 (6) ◽  
pp. 1200-1211 ◽  
Author(s):  
Changjun Zhou ◽  
William S. Kinman ◽  
Paul J. McGinn

Sign in / Sign up

Export Citation Format

Share Document