Computer Modeling of the Formation Process of Core-Shell Nanoparticles Cu@Si

2018 ◽  
Vol 271 ◽  
pp. 47-50 ◽  
Author(s):  
Natalia V. Yumozhapova ◽  
Andrey V. Nomoev ◽  
Yuri Ya. Gafner

The process of nanoparticle Cu@Si formation by the molecular dynamic method using MEAM-potentials was studied. Modeling the droplet behavior demonstrates that a core-shell structure with a copper core and a silicon shell can be formed if the drop is in the liquid state, until the material is finally redistributed. The parameters of thermal stability of Cu@Si composite nanoparticles of different sizes have been determined. It is concluded that as the temperature increases, the diffusion of copper atoms to the surface begins, which leads to a change in the structure and the formation of particles with a core of the Cu@Si type.

2015 ◽  
Vol 27 (20) ◽  
pp. 6960-6968 ◽  
Author(s):  
Cecile S. Bonifacio ◽  
Sophie Carenco ◽  
Cheng Hao Wu ◽  
Stephen D. House ◽  
Hendrik Bluhm ◽  
...  

2006 ◽  
Vol 933 ◽  
Author(s):  
Scott K. Stanley ◽  
John G. Ekerdt

ABSTRACTGermanium nanoparticles are grown on HfO2 substrates by hot-wire chemical vapor deposition (HWCVD). The oxidation and thermal stability of these unmodified Ge nanoparticles are determined with X-ray photoelectron spectroscopy (XPS). Core-shell nanoparticles were then prepared by growing the Ge cores with HWCVD and selectively growing Si or C shell layers on the Ge cores by conventional CVD. The formation of core-shell nanoparticles was monitored with XPS and low energy ion scattering. Large differences are observed in the thermal stability and oxide formation for unmodified Ge and the different core-shell nanoparticles.


2013 ◽  
Vol 74 ◽  
pp. 123-129 ◽  
Author(s):  
Chi-Hang Tsai ◽  
Shih-Yun Chen ◽  
Jenn-Ming Song ◽  
In-Gann Chen ◽  
Hsin-Yi Lee

2014 ◽  
Vol 16 (41) ◽  
pp. 22754-22761 ◽  
Author(s):  
Rao Huang ◽  
Gui-Fang Shao ◽  
Yu-Hua Wen ◽  
Shi-Gang Sun

A microscopic understanding of the thermal stability of metallic core–shell nanoparticles is of importance for their synthesis and ultimately application in catalysis.


NANO ◽  
2014 ◽  
Vol 09 (04) ◽  
pp. 1450042 ◽  
Author(s):  
CONG-WANG ZHANG ◽  
CHANG-CHUN ZENG ◽  
YING XU

Fe 3 O 4– SiO 2 core–shell structure nanoparticles containing magnetic properties were investigated for their potential use in drug delivery. The Fe 3 O 4– SiO 2 core–shell structure nanoparticles were successfully synthesized by a simple and convenient way. The Fe 3 O 4– SiO 2 nanoparticles showed superparamagnetic behavior, indicating a great application potential in separation technologies. From the application point of view, the prepared nanoparticles were found to act as an efficient drug carrier. Specifically, the surface of the core–shell nanoparticles was modified with amino groups by use of silane coupling agent 3-aminopropyltriethoxysilane (APTS). Doxorubicin (DOX) was successfully grafted to the surface of the core–shell nanoparticles after the decoration with the carboxyl acid groups on the surface of amino-modified core–shell structure nanoparticles. Moreover, the nanocomposite showed a good drug delivery performance in the DOX-loading efficiency and drug release experiments, confirming that the materials had a great application potential in drug delivery. It is envisioned that the prepared materials are the ideal agent for application in medical diagnosis and therapy.


2003 ◽  
Vol 774 ◽  
Author(s):  
Jiye Fang ◽  
Jibao He ◽  
Eun Young Shin ◽  
Deborah Grimm ◽  
Charles J. O'Connor ◽  
...  

Abstractγ-Fe2O3@Au core-shell nanoparticles were prepared through a combined route, in which high temperature organic solution synthesis and colloidal microemulsion techniques were successively applied. High magnification of TEM reveals the core-shell structure. The presence of Au on the surface of as-prepared particles is also confirmed by UV-Vis absorption. The magnetic core-shell nanoparticles offer a promising application in bio- and medical systems.


Sign in / Sign up

Export Citation Format

Share Document