Study on the Microstructure and the Machining Performance of Ti3SiC2-TiB2- TiC Composite Ceramic

2018 ◽  
Vol 281 ◽  
pp. 426-431
Author(s):  
Xiang Jun Tang ◽  
Jun Shou Li ◽  
Fang Zhao ◽  
Li Qing

The Ti3SiC2-TiB2-TiC three-phase ceramics are prepared by Spark Plasma Sintering (SPS) method with Self-propagating High-temperature Synthesis (SHS) using Ti, Si, C andB4C powders. The characterization of sintering product’s image and structure is analyzed by XRD and SEM. Most of TiB2’s images are angular cuboid or short bar-shaped and most of TiC phase’s images are irregular spherical particles which are evenly embedded in Ti3SiC2 substrate and have a good combination interface with Ti3SiC2. In the composite ceramic SPS sintering process, sinter sample’s displacement along Z-axis goes through three stages of falling, balance and rising along with the change of heating temperature, which reflects the sample’s change rule between heated expansion force and pressure. Finally its machining performance is analyzed by wire cutting method and machining method. The Ti3SiC2-TiC-TiB2 block composite ceramic proves to have a good machining performance.

2016 ◽  
Vol 47 (5) ◽  
pp. 2725-2731 ◽  
Author(s):  
Mohammad Abedi ◽  
Dmitry O. Moskovskikh ◽  
Alexander S. Rogachev ◽  
Alexander S. Mukasyan

Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 108-120
Author(s):  
Simone Barbarossa ◽  
Roberto Orrù ◽  
Valeria Cannillo ◽  
Antonio Iacomini ◽  
Sebastiano Garroni ◽  
...  

Due to their inherent chemical complexity and their refractory nature, the obtainment of highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve. In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respectively) were successfully produced by spark plasma sintering (SPS) using powders prepared by self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully reached after SPS (1950 °C/20 min/20 MPa). The three HE products showed similar and, in some cases, even better mechanical properties compared to ceramics with the same nominal composition attained using alternative processing methods. Superior Vickers hardness and elastic modulus values were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e., 28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.


2009 ◽  
Vol 620-622 ◽  
pp. 429-432 ◽  
Author(s):  
Gui Min Zhang ◽  
Zheng Yi Fu ◽  
Yu Cheng Wang ◽  
Hao Wang ◽  
Wei Min Wang ◽  
...  

Two different kinds of mullite precursors with composition 3Al2O3•2SiO2 (3:2) were prepared by conventional drying ethanol solution and spray-drying aqueous solution of aluminum nitrate nanohydrate and tetraethoxysilane, respectively. The results of scanning electron microscope (SEM) indicate that one powder consists of irregular particles with size of 1-10μm, the other powder is made of inhomogeneously sized hollow spherical particles with mean size of 0.5-5μm. The TG-DTA curves indicate the hollow spherical particles are unfavorable to eliminate the decomposed products. After the precursors were sintered by Spark Plasma Sintering at 1450°C for 10min, the microstructures of the former are made of fine equiaxed grains with sizes of around 0.5μm, the latter consist of elongated grains distributed in the matrix of fine grains with imhomogenous size of 0.5~10μm due to the liquid phase forming. The different microstructures lead to the former sintered body is transparent, while, the sample from spray-drying is opaque.


2014 ◽  
pp. 667-689
Author(s):  
Wentao Hu ◽  
Yongjun Tian ◽  
Zhongyuan Liu

The starting nanopowders of non-stoichiometric zirconium carbide (ZrCx) were fabricated via milling Zr powders in toluene for different dwell times. The carbon content was determined to depend on the milling time and the used amount of toluene. The bulk non-stoichiometric ZrCx with different x were prepared by spark plasma sintering of the obtained ZrCx nanopowders. The microstructural features of a sintered ZrC0.6 sample were investigated via the measurements of XRD, TEM, and HRTEM. It was found that the carbon vacancies have an ordering arrangement in C sublattice, forming a Zr2C-type cubic superstructural phase with space group of . Moreover, it was observed that the superstructural phase exists in nano-domains with an average size of ~30 nm owing to the ordering length in nanoscale. During the heating treatment in air, it was recognized that the diffusion of oxygen atoms is significantly facilitated through the ordered carbon vacancies. For the heating treatment at low temperature (<300°C), the oxygen atoms diffuse easily into and occupy the ordered carbon vacancies, forming the oxy-carbide of ZrC0.6O0.4 with ordered oxygen atoms. At the heating temperature higher than 350°C an amorphous layer of ZrC0.6Oy>0.4 was identified to be formed due to the diffusion of superfluous oxygen atoms into Zr-tetrahedral centers. Inside the amorphous layer, the metastable tetragonal zirconia nanocrystals are recognized to be gradually developed.


2018 ◽  
Vol 38 (5) ◽  
pp. 2353-2359 ◽  
Author(s):  
Hongjun Zhang ◽  
Hua Ke ◽  
Huijiadai Luo ◽  
Pengkang Guo ◽  
Bin Yang ◽  
...  

2014 ◽  
Vol 1040 ◽  
pp. 772-777 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
Michail A. Korchagin ◽  
Alexander Thömmes ◽  
Vyacheslav I. Mali ◽  
Alexander G. Anisimov ◽  
...  

In this paper structure and mechanical properties of Ni3Al intermetallic compound was studied. The materials was fabricated according to different schemes, which combined mechanical alloying of Ni and Al powders, self-propagating high temperature synthesis (SHS) and spark plasma sintering (SPS). Relative density of all sintered samples was ~ 97 %. Microhardness of the sintered materials ranged from 6100 to 6300 MPa. SPS of 86.71 % wt. Ni and 13.29 % wt. Ni powder at 1100 °C led to formation of material with the highest level of tensile strength equal to 400 MPa.


2008 ◽  
Vol 43 (19) ◽  
pp. 6406-6413 ◽  
Author(s):  
Roberta Licheri ◽  
Roberto Orrù ◽  
Clara Musa ◽  
Antonio Mario Locci ◽  
Giacomo Cao

2020 ◽  
Author(s):  
Mikhail Vladimirovich Dorokhin ◽  
Polina Borisovna Demina ◽  
Irina Viktorovna Erofeeva ◽  
Yuri Mikhailovich Kuznetsov ◽  
Anton Vladimirovich Zdoroveyshchev ◽  
...  

Abstract Thermoelectric Si 0,65 Ge 0,35 Sb δ materials have been fabricated by spark plasma sintering of Ge-Si-Sb powder mixture. The electronic properties of Si 0,65 Ge 0,35 Sb δ were found to be dependent on the uniformity of mixing of the components, which in turn is determined by the maximum heating temperature during solid-state sintering. Provided the concentration of donor Sb impurity is optimized the thermoelectric figure of merit for the investigated structures can be as high as 0.628 at the temperature of 490 °С, the latter value is comparable with world-known analogues obtained for Si 1- x Ge x P δ .


Sign in / Sign up

Export Citation Format

Share Document