Effects of Grain Morphology on Flow Behavior of Semi-Solid Slurries

2022 ◽  
Vol 327 ◽  
pp. 140-145
Author(s):  
Min Luo ◽  
Da Quan Li ◽  
Hong Xing Lu ◽  
Wen Ying Qu ◽  
Hong Zhang ◽  
...  

The flow behavior of semi-solid slurry determines the quality of the castings produced by the semi-solid forming process. Many studies have done to investigate the flow behavior of slurry under different conditions, and results show that the rheological behavior of slurry with dendritic structure is inappropriate for semi-solid forming. In this study, slurries with varying morphologies of grain for the same alloy with the same fraction solid have tested using a partial filling method. The SEED process was employed, and the pouring temperature adjusted to prepare semi-solid slurries with different grain morphologies. The flow pattern, entrapped air during the filling process, and also microstructure of the samples were examined to characterize the macro and micro flow behavior. The results show that a turbulent macro-flow, leading to entrapped air, and severe segregation appeared in the sample using slurry of Tpour ≥ 660 °C . For the slurry of Tpour < 660 °C, none of the three phenomena found in the sample. This investigation further showed that the detriment of dendrite on the semi-solid forming process, and implied that large size dendrite in semi-solid slurry must avoided.

2010 ◽  
Vol 108-111 ◽  
pp. 494-499
Author(s):  
Ying Tong ◽  
Guo Zheng Quan ◽  
Gang Luo ◽  
Jie Zhou

This work was focused on the compressive deformation behavior of 42CrMo steel at temperatures from 1123K to 1348K and strain rates from 0.01s-1 to 10s-1 on a Gleeble-1500 thermo-simulation machine. The true stress-strain curves tested exhibit peak stresses at small strains, after them the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. And the stress level decreases with increasing deformation temperature and decreasing strain rate. The values of strain hardening exponent n, and the strain rate sensitivity exponent m were calculated the method of multiple linear regression, the results show that the two material parameters are not constants, but changes with temperature and strain rate. Then the two variable material parameters were introduced into Fields-Backofen equation amended. Thus the constitutive mechanical discription of 42CrMo steel which can accurately describe the relationships among flow stress, temperature, strain rate, strain offers the basic model for plastic forming process simulation.


2005 ◽  
Vol 6-8 ◽  
pp. 771-778 ◽  
Author(s):  
M. Redecker ◽  
Karl Roll ◽  
S. Häussinger

In recent years very strong efforts have been undertaken to build light weight structures of car bodies in the automotive industry. Structural technologies like Space Frame, tailored blanks and relief-embossed panels are well-known and already in use. Beside that there is a large assortment of design materials with low density or high strength. Magnesium alloys are lighter by approximately 34 percent than aluminum alloys and are considered to be the lightest metallic design material. However forming processes of magnesium sheet metal are difficult due to its complex plasticity behavior. Strain rate sensitivity, asymmetric and softening yield behavior of magnesium are leading to a complex description of the forming process. Asymmetric yield behavior means different yield stress depending on tensile or compressive loading. It is well-known that elevated temperatures around 200°C improve the local flow behavior of magnesium. Experiments show that in this way the forming limit curves can be considerably increased. So far the simulation of the forming process including temperature, strain rates and plastic asymmetry is not state-of-the-art. Moreover, neither reliable material data nor standardized testing procedures are available. According to the great attractiveness of magnesium sheet metal parts there is a serious need for a reliable modeling of the virtual process chain including the specification of required mechanical properties. An existing series geometry which already can be made of magnesium at elevated temperatures is calculated using the finite element method. The results clarify the failings of standard calculation methods and show potentials of its improvement.


2002 ◽  
Vol 124 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Jin Cheng ◽  
Y. Lawrence Yao

Laser forming of steel is a hot forming process with high heating and cooling rate, during which strain hardening, dynamic recrystallization, and phase transformation take place. Numerical models considering strain rate and temperature effects only usually give unsatisfactory results when applied to multiscan laser forming operations. This is mainly due to the inadequate constitutive models employed to describe the hot flow behavior. In this work, this limitation is overcome by considering the effects of microstructure change on the flow stress in laser forming processes of low carbon steel. The incorporation of such flow stress models with thermal mechanical FEM simulation increases numerical model accuracy in predicting geometry change and mechanical properties.


2011 ◽  
Vol 383-390 ◽  
pp. 707-711
Author(s):  
Hong Yan ◽  
Yong Hu ◽  
Xiao Quan Wu

Magnesium alloys have high specific strength, specific stiffness, excellent thermal conductivity and casting properties, which have a great prospects development in the industry, However, its low plasticity and ductility limited its application. Magnesium matrix composites can effectively improve its performance. Magnesium alloy die-casting is the main forming process, the conventional high-pressure die-casting (HPDC) defects in multi-cavity type, easy to volume gas, non-heat-treated. Compared with HPDC, the rheo-diecasting (RDC) process has been greatly developed for near-net shape components. In this paper, Mg2Si /AM60 composites is fabricated by in-situ synthesis and semi-solid magnesium matrix composites which are rheoformed in the die-casting machine are prepared by mechanical stirring. The results indicate that the microstructure of composites is non-dendritic and Chinese script type Mg2Si are fine distributed. The fundamental morphology of microstructure by HPDC is dendrite and liquid-phase distributed between dendrite irregularly. The RDC samples have close-to-zero porosity, less segregation, the most of semi-solid of microstructure in rheo-diecasting is spherical or as-spherical structure.


2016 ◽  
Vol 256 ◽  
pp. 192-198 ◽  
Author(s):  
Hong Xing Lu ◽  
You Feng He ◽  
Stephen Midson ◽  
Da Quan Li ◽  
Qiang Zhu

Surface blistering during T6 heat treating is an artifact that is essentially unique to high pressure casting processes such as semi-solid casting and die casting. It is believed that the blistering originates from subsurface defects present in the castings. When the castings are exposed to elevated temperatures during solution heat treatment, the strength of the aluminum is reduced, and the defects expand to deform the surfaces of the castings. There are three potential sources for the subsurface defects - entrapped air, die lubricant or shot sleeve lubricant.This paper will report on a study to determine the origin of the defects present in the castings that produce the blisters. Along with attempting to separate the influence of air and the two types of lubricants on blister formation, the study will also examine the impact of a number of process parameters on blistering.


2019 ◽  
Vol 285 ◽  
pp. 429-435 ◽  
Author(s):  
Song Chen ◽  
Da Quan Li ◽  
Fan Zhang ◽  
Min Luo ◽  
Xiao Kang Liang ◽  
...  

There are two new processes to development automobile structural components which have certain thickness. In the present paper, taking a main bearing cap product as an example, analyses die design by comparing the experimental and computational numerical simulation results. For the main bearing cap, product structure and mold design were designed to be suitable for characters of SSM die casting and squeeze process. Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity and solid fraction phase make the flow condition more laminar than liquid squeeze casting with the partial fill experiment. And compared with squeeze casting process, the globular shape grain size is smaller than dendritic structure. And mechanical property result shows that the elongation of SSM die casting can achieve more than twice than squeeze casting.


2012 ◽  
pp. 1441-1450
Author(s):  
S. Sharma ◽  
A. Sharma ◽  
S. Kumar

Sign in / Sign up

Export Citation Format

Share Document