Recent Industrial Application and Perspectives of Rheo-Diecast Process in China

2022 ◽  
Vol 327 ◽  
pp. 238-243
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fan Zhang ◽  
Song Chen ◽  
Fan Zhang ◽  
...  

The Rheo-diecast process has been rapidly developed and increasingly used in China in the recent 5 years. The high solid fraction (solid content close to 50%) rheo-diecast components were commercially used in the transportation markets mainly because of lightweight. The mechanical properties of the high solid fraction rheo-diecast components are obviously superior than that of the conventional liquid diecast parts. The defects such as oxide, gas entrapment, shrinkage porosities are well prevented in the high solid fraction rheo-diecast parts. The high solid fraction rheo-diecast parts can be fully T6 heat treated. A comparison between high solid fraction rheo-diecast part and conventional liquid diecast part will be described in detail. The low solid fraction (solid content 5-20%) rheo-diecast components were widely used in the 5G communication markets. The future perspectives of Rheo-diecast process will be described at last. 1. Cost reduction. 2. Production consistency. 3. New Rheo-diecast alloys development. 4. Numerical simulation of Rheological filling.

2001 ◽  
Vol I.01.1 (0) ◽  
pp. 365-366
Author(s):  
Shusuke NAKANO ◽  
Toshiji MUKAI ◽  
Masahide KOHZU ◽  
Shigenori TANABE ◽  
Kenji HIGASHI

2008 ◽  
Vol 141-143 ◽  
pp. 707-712 ◽  
Author(s):  
G. Vaneetveld ◽  
Ahmed Rassili ◽  
Jean Christophe Pierret ◽  
Jacqueline Lecomte-Beckers

Thixoforging is a type of semi-solid metal processing at high solid fraction (0.5<fs<1). 7075 aluminium alloys have been used as a feedstock for thixoforging in order to investigate thixoformability of a high performance aluminium alloy at high solid fraction. Higher solid fraction of 7075 alloy is less sensitive to temperature, avoids metal splash at high speed and allows laminar flow at high speed. Hot tool combined with lubricant tool coating are used to slow down the solidification rate of the high solid fraction metal by decreasing thermal exchanges with the tool. Improved thermal and forming parameters [1-2] will be applied to produce an automotive component by thixoforging and mechanical properties have been measured from tensile samples. High mechanical properties are obtained after T6 thermal treatment.


2017 ◽  
Vol 125 ◽  
pp. 187-195 ◽  
Author(s):  
K.M. Kareh ◽  
C. O'Sullivan ◽  
T. Nagira ◽  
H. Yasuda ◽  
C.M. Gourlay

2020 ◽  
Vol 326 ◽  
pp. 06003
Author(s):  
Toshio Haga

An Al-Mg strip without center segregation could be cast using a single-roll caster equipped with a scraper at speed of 40 m/min. The scraper was useful for flattening a free solidified surface and for cooling the solidification layer by pushing the solidification layer to the roll. Clad strips consisting of 1) an Al-Mn base strip and an Al-Mg overlay strip and 2) an Al base strip and an Al-Sn-Cu overlay strip could be cast using an unequal-diameter twin-roll caster equipped with a scraper at speeds of 30 m/min and 15 m/min, respectively. The base strip and overlay strip were strongly bonded at the interface between the base strip and the overlay strip. The elements of the overlay strip did not diffuse into the base strip. The scraper played two roles in the casting of the clad strip: prevention of the mixture of two kinds of molten metal and making the surface of the base strip a semisolid of high solid fraction.


2019 ◽  
Vol 285 ◽  
pp. 271-276
Author(s):  
Hooman Hadian ◽  
M. Haddad-Sabzevar ◽  
Mohammad Mazinani

An internal cooling agent is used in rapid slurry forming (RSF) process to produce a high solid fraction slurry for a short period of time. In the process used in this research, the swarf which is known to be a low enthalpy material was added to the melt as the internal cooling agent. During the process, the swarf started to melt and a semi-solid slurry with a relatively high solid fraction was formed. This slurry was formed by exchanging the enthalpies between the low and high enthalpy materials. A commercial Al-Si-Cu alloy, i.e. AS9U3 Aluminum alloy, was used in this investigation. The microscopic examination showed that the Al-Si eutectic colonies start to melt during the melting process of swarf material resulting in the formation of globular Alpha-Al grains due to the multiplication of secondary dendrites arms. The fracture of dendrites arms and the subsequent spheroidization were suggested to be the origin of non-dendritic globular grains in the final microstructure. The amount of primary globular Alpha-phase was measured by the image analysis software. The results showed that during high pressure die-casting of AS9U3 Aluminum alloy using 4 mm thick samples, around 35 percent solid has been formed at the temperature of 580 oC.


Sign in / Sign up

Export Citation Format

Share Document