high solid fraction
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 327 ◽  
pp. 238-243
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fan Zhang ◽  
Song Chen ◽  
Fan Zhang ◽  
...  

The Rheo-diecast process has been rapidly developed and increasingly used in China in the recent 5 years. The high solid fraction (solid content close to 50%) rheo-diecast components were commercially used in the transportation markets mainly because of lightweight. The mechanical properties of the high solid fraction rheo-diecast components are obviously superior than that of the conventional liquid diecast parts. The defects such as oxide, gas entrapment, shrinkage porosities are well prevented in the high solid fraction rheo-diecast parts. The high solid fraction rheo-diecast parts can be fully T6 heat treated. A comparison between high solid fraction rheo-diecast part and conventional liquid diecast part will be described in detail. The low solid fraction (solid content 5-20%) rheo-diecast components were widely used in the 5G communication markets. The future perspectives of Rheo-diecast process will be described at last. 1. Cost reduction. 2. Production consistency. 3. New Rheo-diecast alloys development. 4. Numerical simulation of Rheological filling.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1968
Author(s):  
Abdulsalam Muhrat ◽  
Joaquim Barbosa

Brazing joints of Ti/Ti under ultrasonic vibration (USV) and compression load were investigated using optimized and modified filler alloys of Al-Si-Cu-(Ni)-(Sr) group prepared in the lab. Preliminary trails at semisolid to liquid states were conducted using the ready Al-Si-Cu-(Mg) alloy as a filler, then the brazing cycle was redesigned and enhanced according to the microstructural observations of the produced joints. USV assisted brazing at semisolid state of low solid fraction was able to produce joints with round silicon morphology and granular , while at high solid fraction, USV was only able to affect the silicon and intermetallic particles. Applying a compression load after ultrasonic vibration, at a designed solid fraction, was proved to be a successful technique for improving the quality of the joints by reducing the porosity, enhancing the soundness of the joint, and the diffusion at the interface. Based on alloy composition and the improved brazing cycle, joints of thin intermetallic layer and high shear strength (of 93 MPa average value) were achieved. The microstructures and the mechanical behavior were discussed based on the filler compositions and brazing parameters.


2020 ◽  
Vol 6 (29) ◽  
pp. eabb2307 ◽  
Author(s):  
Lin Wang ◽  
Ruoxi Wang ◽  
Jing Wang ◽  
Tak-Sing Wong

Many natural surfaces are capable of rapidly shedding water droplets—a phenomenon that has been attributed to the presence of low solid fraction textures (Φs ~ 0.01). However, recent observations revealed the presence of unusually high solid fraction nanoscale textures (Φs ~ 0.25 to 0.64) on water-repellent insect surfaces, which cannot be explained by existing wetting theories. Here, we show that the contact time of bouncing droplets on high solid fraction surfaces can be reduced by reducing the texture size to ~100 nm. We demonstrated that the texture size–dependent contact time reduction could be attributed to the dominance of line tension on nanotextures and that compact arrangement of nanotextures is essential to withstand the impact pressure of raindrops. Our findings illustrate a potential survival strategy of insects to rapidly shed impacting raindrops, and suggest a previously unidentified design principle to engineering robust water-repellent materials for applications including miniaturized drones.


2020 ◽  
Vol 326 ◽  
pp. 06003
Author(s):  
Toshio Haga

An Al-Mg strip without center segregation could be cast using a single-roll caster equipped with a scraper at speed of 40 m/min. The scraper was useful for flattening a free solidified surface and for cooling the solidification layer by pushing the solidification layer to the roll. Clad strips consisting of 1) an Al-Mn base strip and an Al-Mg overlay strip and 2) an Al base strip and an Al-Sn-Cu overlay strip could be cast using an unequal-diameter twin-roll caster equipped with a scraper at speeds of 30 m/min and 15 m/min, respectively. The base strip and overlay strip were strongly bonded at the interface between the base strip and the overlay strip. The elements of the overlay strip did not diffuse into the base strip. The scraper played two roles in the casting of the clad strip: prevention of the mixture of two kinds of molten metal and making the surface of the base strip a semisolid of high solid fraction.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 922
Author(s):  
Junzhen Gao ◽  
Xiaogang Hu ◽  
Qiang Zhu ◽  
Daquan Li ◽  
Yonglin Kang

The biggest challenge in semisolid processing of high-performance aluminum alloys is the narrow temperature processing windows of these alloys, and as a result, the preparation of qualified semisolid slurries is very important. High solid fraction slurries of high-strength A201 alloy were prepared by the Swirled Enthalpy Equilibration Device (SEED) process. The cooling behavior and microstructures of the A201 slurries produced by the standard, as well as a modified, SEED process were investigated. The results show that qualified A201 slurry can be produced by decreasing the pouring temperature and controlling the processing time in the SEED process. The modified SEED process significantly reduced the radial temperature gradient of the melt, due to the slow cooling rates involved, with the resulting slurries being more uniform, with more spherical microstructures, as compared to those produced by the standard SEED process. The formation of the nondendritic grain structure in the SEED process is attributed to the uniformly distributed large number of nuclei within the melt and the slow cooling of the melt in the containing crucible.


2019 ◽  
Vol 872 ◽  
pp. 560-593 ◽  
Author(s):  
C. A. Klettner ◽  
I. Eames ◽  
J. C. R. Hunt

In this paper we investigate the effect of an inhomogeneous and unsteady velocity field incident on an array of rigid circular cylinders arranged within a circular perimeter (diameter $D_{G}$) of varying solid fraction $\unicode[STIX]{x1D719}$, where the unsteady flow is generated by placing a cylinder (diameter $D_{G}$) upwind of the array. Unsteady two-dimensional viscous simulations at a moderate Reynolds number ($Re=2100$) and also, as a means of extrapolating to a flow with a very high Reynolds number, inviscid rapid distortion theory (RDT) calculations were carried out. These novel RDT calculations required the circulation around each cylinder to be zero which was enforced using an iterative method. The two main differences which were highlighted was that the RDT calculations indicated that the tangential velocity component is amplified, both, at the front and sides of the array. For the unsteady viscous simulations this result did not occur as the two-dimensional vortices (of similar size to the array) are deflected away from the boundary and do not penetrate into the boundary layer. Secondly, the amplification is greater for the RDT calculations as for the unsteady finite Reynolds number calculations. For the two highest solid fraction arrays, the mean flow field has two recirculation regions in the near wake of the array, with closed streamlines that penetrate into the array which will have important implications for scalar transport. The increased bleed through the array at the lower solid fraction results in this recirculation region being displaced further downstream. The effect of inviscid blocking and viscous drag on the upstream streamwise velocity and strain field is investigated as it directly influences the ability of the large coherent structures to penetrate into the array and the subsequent forces exerted on the cylinders in the array. The average total force on the array was found to increase monotonically with increasing solid fraction. For high solid fraction $\unicode[STIX]{x1D719}$, although the fluctuating forces on the individual cylinders is lower than for low $\unicode[STIX]{x1D719}$, these forces are more correlated due to the proximity of the cylinders. The result is that for mid to high solid fraction arrays the fluctuating force on the array is insensitive to $\unicode[STIX]{x1D719}$. For low $\unicode[STIX]{x1D719}$, where the interaction of the cylinders is weak, the force statistics on the individual cylinders can be accurately estimated from the local slip velocity that occurs if the cylinders were removed.


2019 ◽  
Vol 285 ◽  
pp. 271-276
Author(s):  
Hooman Hadian ◽  
M. Haddad-Sabzevar ◽  
Mohammad Mazinani

An internal cooling agent is used in rapid slurry forming (RSF) process to produce a high solid fraction slurry for a short period of time. In the process used in this research, the swarf which is known to be a low enthalpy material was added to the melt as the internal cooling agent. During the process, the swarf started to melt and a semi-solid slurry with a relatively high solid fraction was formed. This slurry was formed by exchanging the enthalpies between the low and high enthalpy materials. A commercial Al-Si-Cu alloy, i.e. AS9U3 Aluminum alloy, was used in this investigation. The microscopic examination showed that the Al-Si eutectic colonies start to melt during the melting process of swarf material resulting in the formation of globular Alpha-Al grains due to the multiplication of secondary dendrites arms. The fracture of dendrites arms and the subsequent spheroidization were suggested to be the origin of non-dendritic globular grains in the final microstructure. The amount of primary globular Alpha-phase was measured by the image analysis software. The results showed that during high pressure die-casting of AS9U3 Aluminum alloy using 4 mm thick samples, around 35 percent solid has been formed at the temperature of 580 oC.


Sign in / Sign up

Export Citation Format

Share Document