Design Requirements for Autonomous Multivehicle Surface-Underwater Operations

2009 ◽  
Vol 43 (2) ◽  
pp. 61-72 ◽  
Author(s):  
Brian S. Bingham ◽  
Eric F. Prechtl ◽  
Richard A. Wilson

AbstractFuture autonomous marine missions will depend on the seamless coordination of autonomous vehicles: unmanned surface vehicles (USVs), unmanned underwater vehicles (UUVs) and unmanned aerial vehicles (UAVs). Such coordination will enable important inter-vehicle applications such as autonomous refueling, high-throughput data transfer and periodic maintenance to extend the mission length. A critical enabling capability is the autonomous capture, retrieval and deployment of a UUV from a USV platform. As a first step toward solving this problem, we propose a performance specification that quantifies the necessary motion compensation required to safely and reliably operate a USV and UUV in concert in the dynamic marine environment. To accomplish this, we use a model-based approach to predict the motion of typical vehicles under the influence of the same sea conditions. We summarize the predictions succinctly using a scalar performance metric, the peak-to-peak vertical displacement, as a function of vehicle type, sea-state and vehicle formation.To substantiate this model-based approach experimentally, we present sea-trial data and compare the empirical observations to model predictions. The results show that although simple three degree-of-freedom models do not capture the full complexity of an actual six degree-of-freedom ship motion, they can prove expedient in an engineering context for quantifying the design requirements of a USV-UUV capture, deployment and retrieval system.

1974 ◽  
Vol 18 (2) ◽  
pp. 187-187
Author(s):  
A. M. Ray

A test bed type astronaut maneuvering unit was designed and evaluated with the assistance of Martin Marietta's six degree of freedom simulator. Four different control modes were developed for this unit for test and evaluation inside Skylab's 22 foot diameter orbital workshop. The orbital tests have provided the experience and technology base necessary for space Shuttle and space station astronaut maneuvering unit design requirements. This paper is an overview of the M509 experiment hardware, procedures, and results with emphasis on the comparison between on-orbit test results and the six degree of freedom simulator. The simulator was used to develop the unit's design requirements, evaluate the control logic parameters, and for developing maneuvers and training the crew. The simulator will also be flown by the Skylab crews in May for post flight evaluation and simulator calibration. (Films of the simulations and on-orbit flight are available as part of this presentation.)


2004 ◽  
Vol 127 (4) ◽  
pp. 324-332 ◽  
Author(s):  
Sen-Yung Lee ◽  
Yung-Chang Cheng

Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a ten-degree-of-freedom truck system, considering the lateral displacement, the vertical displacement, the roll and yaw angles of the each wheelset, and the lateral displacement and yaw angle of the truck frame, moving on curved tracks, are derived in completeness. To illustrate the accuracy of the analysis, the limiting cases are examined. The influences of the suspension parameters, including those losing in the six-degree-of-freedom system, on the critical hunting speeds evaluated via the linear and nonlinear creep models, respectively, are studied and compared.


2021 ◽  
Vol 10 (1) ◽  
pp. 70-78
Author(s):  
Khalaf S Gaeid ◽  
Asaad F Nashee ◽  
Ibrahim A. Ahmed ◽  
Mohammed H. Dekheel

The robots pay important role in all parts of our life. Hence, the modeling of the robot is essential to develop the performance specification. Robot model of six degree of freedom (6DoF) manipulator implemented numerically using model-based technique. The kinematic analysis and simulation were studied with Inverse kinematics of the robot manipulator through Denevit and Hartenberg method. Matrix transformation method is used in this work in order to separate joint variables from kinematic equations. The finding of the desired configuration is obtained precisely in all motion trajectory along the end-effector path. MATLAB/SIMULINK with R2018b is used for the implementation of the model-based robot system. Simulation results showed that the robot rinks follow their references smoothly and precisely and ensure the effectiveness of direct kinematic algorithm in the analysis and control of the robotic field.


Sign in / Sign up

Export Citation Format

Share Document