scholarly journals The effect of slow release coated-fertilizers on improving paddy culture. Studies on labor, yield and disease resistance in non-split fertilizer application.

1996 ◽  
Vol 31 (2) ◽  
pp. 93-102
Author(s):  
Akiraka YAMADA ◽  
Kohichi OGASAWARA ◽  
Tetsuo SHIOYA
2013 ◽  
Vol 34 (3) ◽  
pp. 657-665 ◽  
Author(s):  
Yu Guan ◽  
Chao Song ◽  
Yantai Gan ◽  
Feng-Min Li

2016 ◽  
Vol 20 (1) ◽  
pp. 37 ◽  
Author(s):  
Lili Handayani ◽  
Gunawan Djajakirana ◽  
. Darmawan ◽  
Canecio Peralta Munoz

The low-efficiency problem in fertilizer application can be overcome by controlling fertilizer solubility, i.e. by rendering the fertilizer to be released gradually; such material is also known as slow-release fertilizer (SRF). This research was aimed to formulate SRF by coating technique using acrylic and chitosan as the coating material, and to evaluate fertilizer resistance to too fast disintegration, and rate of nutrient release method. The results demonstrated that fertilizer formulation containing  N, P, K, Fe, Cu, and Zn with granulation technique yielded 74% of granules with 2-5 mm in diameter. The SRFs (formulated fertilizer with acrylic or chitosan coating) were more resistant to water pounding than non-SRF. Furthermore, shaking test with distilled water or 2% citric acid, or by percolation test with distilled water showed that the SRFs had lower nutrient solubility than the non-SRFs. The results of shaking test also specifically indicated that coating with acrylic made the fertilizer more resistant to the citric acid,suggesting that this coating material would be more suitable in acidic soils. The SRFs formulated with the addition of chitosan during blending of micronutrients prior to mixing with macronutrients, granulation, and final coating exhibited lower nutrient solubility than the SRFs without the pre-coating chitosan addition. [How to Cite: Lili H, G Djajakirana, Darmawan, and CP Munoz. 2015. Slow- Release Fertilizer Formulation Using Acrylic and Chitosan Coating. J Trop Soils 19: 37-45. Doi: 10.5400/jts.2015.20.1.37][Permalink/DOI: www.dx.doi.org/10.5400/jts.2015.20.1.37]


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 463D-463
Author(s):  
Kimberly Klock-Moore

The objective of this experiment was to compare the growth of impatiens `Accent Orange' in substrates containing compost made from biosolids and yard trimmings with four slow-release fertilizer application rates. Plugs of impatiens were transplanted into 400-ml pots filled with 100% compost as a stand-alone substrate or with 60%, 30%, or 0% compost combined with control substrate components. Six days after transplanting, all plants were top-dressed with 0.5, 1, 2, or 4 g of Nutricote 13N-5.7P-10.8K (type 180) per pot. Shoot dry mass increased as the percentage of compost in the substrate increased from 0% to 100%. Shoot dry mass also increased as the fertilizer application rate increased from 0.5 to 4 g per pot. Plants grown in 30% and 60% compost with 0.5 g of fertilizer were similar in size to plants grown in 0% compost with 4 g of fertilizer per pot. Plants grown in 100% compost at all of the fertilizer rates were larger than all other plants in this study.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 75
Author(s):  
Ashoka Gamage ◽  
Ben Basnayake ◽  
Janendra De Costa ◽  
Othmane Merah

Fertilizer application in rice farming is an essential requirement. Most of the high-yielding varieties which are extensively grown throughout the country require recommended levels of fertilizers to obtain their potential yields. However, effective, and efficient ways of fertilizer application are of utmost importance. Coated fertilizers are used to reduce leaching nutrients and improve the efficiency of fertilizer. However, conventional coated fertilizers such as Sulphur coated urea and urea super granules are not popular among rice farmers in Sri Lanka owing to the high cost. Mixing urea-coated rice husk biochar causes a slow release of nitrogen fertilizer. This coated fertilizer and rice straw compost reduction the cost of importations of nitrogen-based fertilizers per unit area of cultivation. The study aimed to evaluate the effects of rice husk biochar coated urea and anaerobically digested rice straw compost on the soil fertility, and the cyclic effect of phosphorus. Concerning the pot experiment, rice grain yield was significantly higher in Rice husk biochar coated urea, triple super phosphate (TSP), and muriate of potash (MOP) with anaerobically digested rice straw compost. The lowest yield was observed in the control. The release of phosphate shows a cycle effect which is an important finding. Rice husk biochar coated urea can potentially be used as a slow-releasing nitrogen fertilizer. In addition, the urea coated with biochar is less costly and contributes to mitigating pollution of water bodies by inorganic fertilizers (NPK).


2014 ◽  
Vol 980 ◽  
pp. 18-22
Author(s):  
Nurul Ekmi Rabat ◽  
Shahrir Hashim ◽  
Rohah A. Majid

For slow release fertilizer application, oil palm empty fruit bunch-grafted-poly (acrylic acid-co-acrylamide) [OPEFB-g-P(AA-co-AAm)] hydrogel composites were synthesized via two techniques; Two Steps (T1) and in-situ (T2). Scanning electron microscopy of hydrogel composite T1 has higher surface area and holes while hydrogel T2 displays smoother and tighter surface. Water absorbency capacity of hydrogel T1 is 42.90 gram/gram (g/g) and hydrogel T2 is 39.96 g/g. WAC of hydrogel T2 has much better re-swelling ability compared to T1 after it went through five cycles of drying-swelling-drying process. Hence, T2 has produced a hydrogel composite that is reusable with great morphology properties.


Sign in / Sign up

Export Citation Format

Share Document