scholarly journals Visuotactile Peripersonal Space in Healthy Humans: Evidence from Crossmodal Congruency and Redundant Target Effects

2015 ◽  
Vol 21 (2) ◽  
pp. 133-142 ◽  
Author(s):  
Wataru TERAMOTO ◽  
Tomoaki KAKUYA
2018 ◽  
Author(s):  
Axel Davies Vittersø ◽  
Monika Halicka ◽  
Gavin Buckingham ◽  
Michael J Proulx ◽  
Mark Wilson ◽  
...  

Representations of the body and peripersonal space can be distorted for people with some chronic pain conditions. Experimental pain induction can give rise to similar, but transient distortions in healthy individuals. However, spatial and bodily representations are dynamic, and constantly update as we interact with objects in our environment. It is unclear whether induced pain disrupts the mechanisms involved in updating these representations. In the present study, we sought to investigate the effect of induced pain on the updating of peripersonal space and body representations during and following tool-use. We compared performance under three conditions (pain, active placebo, neutral) on a visuotactile crossmodal congruency task and a tactile distance judgement task to measure updating of peripersonal space and body representations, respectively. We induced pain by applying 1% capsaicin cream to the arm, and for placebo we used a gel that induced non-painful warming. Consistent with previous findings, the difference in crossmodal interference from visual distractors in the same compared to opposite visual field to the tactile target was less when tools were crossed than uncrossed. This suggests an extension of peripersonal space to incorporate the tips of the tools. Also consistent with previous findings, estimates of the felt distance between two points (tactile distance judgements) decreased after active tool-use. In contrast to our predictions, however, we found no evidence that pain interfered with performance on either task when compared to the control conditions. This suggests that the updating of peripersonal space and body representations is not disrupted by induced pain. Therefore, acute pain does not account for the distorted representations of the body and peripersonal space that can endure in people with chronic pain conditions.


2022 ◽  
Vol 98 ◽  
pp. 103267
Author(s):  
Elena Gherri ◽  
Marios Theocharopoulos ◽  
Niall Browne ◽  
Nazire Duran ◽  
Elizabeth J. Austin

2021 ◽  
Author(s):  
Giulia Ellena ◽  
Tommaso Bertoni ◽  
Manon Durand-Ruel ◽  
John Thoresen ◽  
Carmen Sandi ◽  
...  

Peripersonal space (PPS) is the region of space surrounding the body. It has a dedicated multisensory-motor representation, whose purpose is to predict and plan interactions with the environment, and which can vary depending on environmental circumstances. Here, we investigated the effect on the PPS representation of an experimentally induced stress response. We assessed PPS representation in healthy humans, before and after a stressful manipulation, by quantifying visuotactile interactions as a function of the distance from the body, while monitoring salivary cortisol concentration. Participants, who showed a cortisol stress response, presented enhanced visuotactile integration for stimuli close to the body and reduced for far stimuli. Conversely, individuals, with a less pronounced cortisol response, showed a reduced difference in visuotactile integration between the near and the far space. In our interpretation, physiological stress resulted in a freezing-like response, where multisensory-motor resources are allocated only to the area immediately surrounding the body.


2015 ◽  
Vol 114 (6) ◽  
pp. 3121-3130 ◽  
Author(s):  
Freek van Ede ◽  
Tobias Winner ◽  
Eric Maris

Goal-directed movements require effective integration of tactile input with ongoing movement. Here we investigated the functional consequences of such integration in healthy humans by probing the influence of spatially congruent and incongruent tactile stimuli on performance in a speeded button-press task. In addition, using magnetoencephalography (MEG), we evaluated whether the modulation of somato-motor beta (13–30 Hz) oscillations following tactile input—which has been shown to propagate to motor areas—could underlie this influence. We demonstrate that congruent tactile stimuli, despite being irrelevant to the motor task, lead to both faster and more accurate responses. We further show that this automatic upregulation of lateralized motor readiness 1) is specific to tactile input, 2) is independent of the spatial separation of the hands in peripersonal space, and 3) lasts (and remains facilitatory) for up to a second after the tactile input. This pattern of behavioral results is in line with recent physiological investigations showing that somatosensory and motor areas directly influence each other's processing capacity through joint changes in brain state. At the same time, however, the tactile-induced modulation of beta oscillations (one particular index of such a somato-motor state change) could not account for the observed movement facilitation, because it had a different time course.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simone Rossi ◽  
Gionata Salvietti ◽  
Francesco Neri ◽  
Sara M. Romanella ◽  
Alessandra Cinti ◽  
...  

AbstractIt is likely that when using an artificially augmented hand with six fingers, the natural five plus a robotic one, corticospinal motor synergies controlling grasping actions might be different. However, no direct neurophysiological evidence for this reasonable assumption is available yet. We used transcranial magnetic stimulation of the primary motor cortex to directly address this issue during motor imagery of objects’ grasping actions performed with or without the Soft Sixth Finger (SSF). The SSF is a wearable robotic additional thumb patented for helping patients with hand paresis and inherent loss of thumb opposition abilities. To this aim, we capitalized from the solid notion that neural circuits and mechanisms underlying motor imagery overlap those of physiological voluntary actions. After a few minutes of training, healthy humans wearing the SSF rapidly reshaped the pattern of corticospinal outputs towards forearm and hand muscles governing imagined grasping actions of different objects, suggesting the possibility that the extra finger might rapidly be encoded into the user’s body schema, which is integral part of the frontal-parietal grasping network. Such neural signatures might explain how the motor system of human beings is open to very quickly welcoming emerging augmentative bioartificial corticospinal grasping strategies. Such an ability might represent the functional substrate of a final common pathway the brain might count on towards new interactions with the surrounding objects within the peripersonal space. Findings provide a neurophysiological framework for implementing augmentative robotic tools in humans and for the exploitation of the SSF in conceptually new rehabilitation settings.


Author(s):  
Samuel B. Hunley ◽  
Arwen M. Marker ◽  
Stella F. Lourenco

Abstract. The current study investigated individual differences in the flexibility of peripersonal space (i.e., representational space near the body), specifically in relation to trait claustrophobic fear (i.e., fear of suffocating or being physically restricted). Participants completed a line bisection task with either a laser pointer (Laser condition), allowing for a baseline measure of the size of one’s peripersonal space, or a stick (Stick condition), which produces expansion of one’s peripersonal space. Our results revealed that individuals high in claustrophobic fear had larger peripersonal spaces than those lower in claustrophobic fear, replicating previous research. We also found that, whereas individuals low in claustrophobic fear demonstrated the expected expansion of peripersonal space in the Stick condition, individuals high in claustrophobic fear showed less expansion, suggesting decreased flexibility. We discuss these findings in relation to the defensive function of peripersonal space and reduced attentional flexibility associated with trait anxieties.


Sign in / Sign up

Export Citation Format

Share Document