scholarly journals Acute stress affects peripersonal space representation

2021 ◽  
Author(s):  
Giulia Ellena ◽  
Tommaso Bertoni ◽  
Manon Durand-Ruel ◽  
John Thoresen ◽  
Carmen Sandi ◽  
...  

Peripersonal space (PPS) is the region of space surrounding the body. It has a dedicated multisensory-motor representation, whose purpose is to predict and plan interactions with the environment, and which can vary depending on environmental circumstances. Here, we investigated the effect on the PPS representation of an experimentally induced stress response. We assessed PPS representation in healthy humans, before and after a stressful manipulation, by quantifying visuotactile interactions as a function of the distance from the body, while monitoring salivary cortisol concentration. Participants, who showed a cortisol stress response, presented enhanced visuotactile integration for stimuli close to the body and reduced for far stimuli. Conversely, individuals, with a less pronounced cortisol response, showed a reduced difference in visuotactile integration between the near and the far space. In our interpretation, physiological stress resulted in a freezing-like response, where multisensory-motor resources are allocated only to the area immediately surrounding the body.

2008 ◽  
Vol 68 (4) ◽  
pp. 572-578 ◽  
Author(s):  
R H Straub ◽  
G Pongratz ◽  
H Hirvonen ◽  
T Pohjolainen ◽  
M Mikkelsson ◽  
...  

Objective:Acute stress in patients with rheumatoid arthritis (RA) should stimulate a strong stress response. After cryotherapy, we expected to observe an increase of hormones of the adrenal gland and the sympathetic nervous system.Methods:A total of 55 patients with RA were recruited for whole-body cryotherapy at −110°C and −60°C, and local cold therapy between −20°C and −30°C for 7 days. We measured plasma levels of steroid hormones, neuropeptide Y (sympathetic marker), and interleukin (IL)6 daily before and after cryotherapy.Results:In both therapy groups with/without glucocorticoids (GC), hormone and IL6 levels at baseline and 5 h after cold stress did not change over 7 days of cryotherapy. In patients without GC, plasma levels of cortisol and androstenedione were highest after −110°C cold stress followed by −60°C or local cold stress. The opposite was found in patients under GC therapy, in whom, unexpectedly, −110°C cold stress elicited the smallest responses. In patients without GC, adrenal cortisol production increased relative to other adrenal steroids, and again the opposite was seen under GC therapy with a loss of cortisol and an increase of dehydroepiandrosterone. Importantly, there was no sympathetic stress response in both groups. Patients without GC and −110°C cold stress demonstrated higher plasma IL6 compared to the other treatment groups (not observed under GC), but they showed the best clinical response.Conclusions:We detected an inadequate stress response in patients with GC. It is further shown that the sympathetic stress response was inadequate in patients with/without GC. Paradoxically, plasma levels of IL6 increased under strong cold stress in patients without GC. These findings confirm dysfunctional stress axes in RA.


2018 ◽  
Vol 115 (43) ◽  
pp. E10206-E10215 ◽  
Author(s):  
Immanuel G. Elbau ◽  
Benedikt Brücklmeier ◽  
Manfred Uhr ◽  
Janine Arloth ◽  
Darina Czamara ◽  
...  

Ample evidence links dysregulation of the stress response to the risk for psychiatric disorders. However, we lack an integrated understanding of mechanisms that are adaptive during the acute stress response but potentially pathogenic when dysregulated. One mechanistic link emerging from rodent studies is the interaction between stress effectors and neurovascular coupling, a process that adjusts cerebral blood flow according to local metabolic demands. Here, using task-related fMRI, we show that acute psychosocial stress rapidly impacts the peak latency of the hemodynamic response function (HRF-PL) in temporal, insular, and prefrontal regions in two independent cohorts of healthy humans. These latency effects occurred in the absence of amplitude effects and were moderated by regulatory genetic variants of KCNJ2, a known mediator of the effect of stress on vascular responsivity. Further, hippocampal HRF-PL correlated with both cortisol response and genetic variants that influence the transcriptional response to stress hormones and are associated with risk for major depression. We conclude that acute stress modulates hemodynamic response properties as part of the physiological stress response and suggest that HRF indices could serve as endophenotype of stress-related disorders.


2020 ◽  
pp. 101-118
Author(s):  
James M. Bjork ◽  
Nicholas D. Thomson

Stress is both a critical contributor and consequence of substance use disorder (SUD). First, exaggerated subjective stress responses are characteristic of affective symptomatology such as depression, bipolar disorder, generalized anxiety, and posttraumatic stress disorder (sometimes stemming from histories of abuse) that have been prognostic of development of addiction in longitudinal studies. Substance use is negatively reinforced in many at-risk and addicted individuals because it may acutely alleviate stress. Second, chronic administration of commonly abused substances alters physiological stress response systems, especially during acute withdrawal. Third, acute stress responses blunt the addicted individual’s frontocortically mediated behavioral repertoire (solution space) in favor of reflexive behavioral biases toward relief-based substance use. Therefore, acute stress responses are a strong trigger for relapse to substance use during extended recovery. These findings have collectively led to approaches to SUD relapse prevention that pharmacologically blunt components of the stress response, but these agents have not reliably shown success in human clinical trials. This chapter reviews these different relationships between stress and addiction and offers future avenues for additional research.


2018 ◽  
Author(s):  
Justine Cléry ◽  
Olivier Guipponi ◽  
Soline Odouard ◽  
Claire Wardak ◽  
Suliann Ben Hamed

AbstractWhile extra-personal space is often erroneously considered as a unique entity, early neuropsychological studies report a dissociation between near and far space processing both in humans and in monkeys. Here, we use functional MRI in a naturalistic 3D environment to describe the non-human primate near and far space cortical networks. We describe the co-occurrence of two extended functional networks respectively dedicated to near and far space processing. Specifically, far space processing involves occipital, temporal, parietal, posterior cingulate as well as orbitofrontal regions not activated by near space, possibly subserving the processing of the shape and identity of objects. In contrast, near space processing involves temporal, parietal and prefrontal regions not activated by far space, possibly subserving the preparation of an arm/hand mediated action in this proximal space. Interestingly, this network also involves somatosensory regions, suggesting a cross-modal anticipation of touch by a nearby object. Last, we also describe cortical regions that process both far and near space with a preference for one or the other. This suggests a continuous encoding of relative distance to the body, in the form of a far-to-near gradient. We propose that these cortical gradients in space representation subserve the physically delineable peripersonal spaces described in numerous psychology and psychophysics studies.HighlightsNear space processing involves temporal, parietal and prefrontal regions.Far space activates occipital, temporal, parietal, cingulate & orbitofrontal areas.Most regions process both far & near space, with a preference for one or the other.Far-to-near gradient may subserve behavioral changes in peripersonal space size.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yann Coello ◽  
Alice Cartaud

The peripersonal space is an adaptive and flexible interface between the body and the environment that fulfills a dual-motor function: preparing the body for voluntary object-oriented actions to interact with incentive stimuli and preparing the body for defensive responses when facing potentially harmful stimuli. In this position article, we provide arguments for the sensorimotor rooting of the peripersonal space representation and highlight the variables that contribute to its flexible and adaptive characteristics. We also demonstrate that peripersonal space represents a mediation zone between the body and the environment contributing to not only the control of goal-directed actions but also the organization of social life. The whole of the data presented and discussed led us to the proposal of a new theoretical framework linking the peripersonal action space and the interpersonal social space and we highlight how this theoretical framework can account for social behaviors in populations with socio-emotional deficits.


2005 ◽  
Vol 46 (2) ◽  
pp. 170-186 ◽  
Author(s):  
Terrence D. Hill ◽  
Catherine E. Ross ◽  
Ronald J. Angel

How do neighborhoods affect the health of residents? We propose that the impact of neighborhood disorder on self-reported health is mediated by psychological and physiological distress. We hypothesize a stress process in which chronic stressors in the environment give rise to a psychological and physiological stress response that ultimately affects health. The exogenous variable of interest is the neighborhood where disadvantaged persons live, which may expose them to chronic stressors in the form of crime, trouble, harassment, and other potentially distressing signs of disorder and decay. The mediator is the stress response that occurs in the body and brain. Of interest here is a psychological stress response in the form of fearful anxiety and depression, and a physiological stress response in the form of signs and symptoms of autonomic arousal, such as dizziness, chest pains, trouble breathing, nausea, upset stomach, and weakness. The outcome is poor health. This model is supported using data from the Welfare, Children, and Families project, a sample of 2,402 disadvantaged women in disadvantaged neighborhoods in Chicago, Boston, and San Antonio.


2021 ◽  
Vol 11 (2) ◽  
pp. 225
Author(s):  
Chiara Spaccasassi ◽  
Ivana Frigione ◽  
Angelo Maravita

Slow, gentle stimulation of hairy skin is generally accompanied by hedonic sensations. This phenomenon, also known as (positive) affective touch, is likely to be the basis of affiliative interactions with conspecifics by promoting inter-individual bindings. Previous studies on healthy humans have demonstrated that affective touch can remarkably impact behavior. For instance, by administering the Rubber Hand Illusion (RHI) paradigm, the embodiment of a fake hand enhances after a slow, affective touch compared to a fast, neutral touch. However, results coming from this area are not univocal. In addition, there are no clues in the existing literature on the relationship between affective touch and the space around our body. To overcome these lacks, we carried out two separate experiments where participants underwent a RHI paradigm (Experiment 1) and a Visuo-Tactile Interaction task (Experiment 2), designed to tap into body representation and peripersonal space processing, respectively. In both experiments, an affective touch (CT-optimal, 3 cm/s) and neutral touch (CT-suboptimal, 18 cm/s) were delivered by the experimenter on the dorsal side of participants’ hand through a “skin to skin” contact. In Experiment 1, we did not find any modulation of body representation—not at behavioral nor at a physiological level—by affective touch. In Experiment 2, no visuo-tactile spatial modulation emerged depending upon the pleasantness of the touch received. These null findings are interpreted in the light of the current scientific context where the real nature of affective touch is often misguided, and they offer the possibility to pave the way for understanding the real effects of affective touch on body/space representation.


2020 ◽  
Vol 27 (4) ◽  
pp. 132-153 ◽  
Author(s):  
André Schulz ◽  
Dana Schultchen ◽  
Claus Vögele

Abstract. The brain and peripheral bodily organs continuously exchange information. Exemplary, interoception refers to the processing and perception of ascending information from the body to the brain. Stress responses involve a neurobehavioral cascade, which includes the activation of peripheral organs via neural and endocrine pathways and can thus be seen as an example for descending information on the brain-body axis. Hence, the interaction of interoception and stress represents bi-directional communication on the brain-body axis. The main hypothesis underlying this review is that the dysregulation of brain-body communication represents an important mechanism for the generation of physical symptoms in stress-related disorders. The aims of this review are, therefore, (1) to summarize current knowledge on acute stress effects on different stages of interoceptive signal processing, (2) to discuss possible patterns of abnormal brain-body communication (i.e., alterations in interoception and physiological stress axes activation) in mental disorders and chronic physical conditions, and (3) to consider possible approaches to modify interoception. Due to the regulatory feedback loops underlying brain-body communication, the modification of interoceptive processes (ascending signals) may, in turn, affect physiological stress axes activity (descending signals), and, ultimately, also physical symptoms.


2009 ◽  
Vol 276 (1664) ◽  
pp. 2051-2056 ◽  
Author(s):  
Molly J. Dickens ◽  
David J. Delehanty ◽  
L. Michael Romero

Translocation and reintroduction have become major conservation actions in attempts to create self-sustaining wild populations of threatened species. However, avian translocations have a high failure rate and causes for failure are poorly understood. While ‘stress’ is often cited as an important factor in translocation failure, empirical evidence of physiological stress is lacking. Here we show that experimental translocation leads to changes in the physiological stress response in chukar partridge, Alectoris chukar . We found that capture alone significantly decreased the acute glucocorticoid (corticosterone, CORT) response, but adding exposure to captivity and transport further altered the stress response axis (the hypothalamic–pituitary–adrenal axis) as evident from a decreased sensitivity of the negative feedback system. Animals that were exposed to the entire translocation procedure, in addition to the reduced acute stress response and disrupted negative feedback, had significantly lower baseline CORT concentrations and significantly reduced body weight. These data indicate that translocation alters stress physiology and that chronic stress is potentially a major factor in translocation failure. Under current practices, the restoration of threatened species through translocation may unwittingly depend on the success of chronically stressed individuals. This conclusion emphasizes the need for understanding and alleviating translocation-induced chronic stress in order to use most effectively this important conservation tool.


Author(s):  
Renae Charalambous ◽  
Troy Simonato ◽  
Matthew Peel ◽  
Edward Narayan

Koalas (Phascolarctos cinereus) are one of Australia's most charismatic native small marsupial species. Unfortunately, populations of koalas are rapidly declining throughout Australia and they continue to face increasing pressure from a changing ecosystem. Negative stimulants in the environment can elicit stress responses through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Depending on the duration of the negative stimulant, the stress response can lead to either acute or chronic side effects, and is shown through the activation of the neuroendocrine stress system and the release of glucocorticoids (e.g., cortisol). Wild koalas entering clinical care face novel stressors that can be out of a wildlife carer's control. In this pilot study, we monitored physiological stress in three wild koalas at a wildlife rehabilitation centre in New South Wales, Australia. Acute and chronic stress was indexed non-invasively, with faecal samples taken to evaluate acute stress, and fur samples taken to evaluate chronic stress. Sampling occurred sporadically over four months, from the start of September 2018 to the end of December 2018. Results attempt to understand the stress response of koalas to negative stimulants in the environment by comparing faecal glucocorticoids on days where a known stressor was recorded with days where no known stressor was recorded. Furthermore, variations in faecal and fur glucocorticoids were compared between the three koalas in this study. To our knowledge, this is the first evidence of stress tracking of wild rescued koalas in a sanctuary. We suggest that further monitoring of baseline, acute and chronic stress will be needed to better understand how koalas respond to negative stimulants associated with clinical care.


Sign in / Sign up

Export Citation Format

Share Document