scholarly journals Bioremediation of pesticide-contaminated soil: a review on indispensable role of soil bacteria

2022 ◽  
Vol 17 (1) ◽  
pp. 19
Author(s):  
J. L. P. C. Randika ◽  
P. K. G. S. S. Bandara ◽  
H. S. M. Soysa ◽  
H. A. D. Ruwandeepika ◽  
S. K. Gunatilake
2006 ◽  
Vol 72 (1) ◽  
pp. 28-36 ◽  
Author(s):  
A. D'Annibale ◽  
F. Rosetto ◽  
V. Leonardi ◽  
F. Federici ◽  
M. Petruccioli

ABSTRACT Nine fungal strains isolated from an aged and heavily contaminated soil were identified and screened to assess their degradative potential. Among them, Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain DABAC 3, and Phlebia sp. strain DABAC 9 were selected for remediation trials on the basis of Poly R-478 decolorization associated with lignin-modifying enzyme (LME) production. These autochthonous fungi were tested for the abilities to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in the same contaminated soil. After 30 days, fungal colonization was clearly visible and was confirmed by ergosterol determination. In spite of subalkaline pH conditions and the presence of heavy metals, the autochthonous fungi produced laccase and Mn and lignin peroxidases. No LME activities were detected in control microcosms. All of the isolates led to a marked removal of naphthalene, dichloroaniline isomers, o-hydroxybiphenyl, and 1,1′-binaphthalene. Stachybotrys sp. strain DABAC 3 was the most effective isolate due to its ability to partially deplete the predominant contaminants 9,10-anthracenedione and 7H-benz[DE]anthracen-7-one. A release of chloride ions was observed in soil treated with either Allescheriella sp. strain DABAC 1 or Stachybotrys sp. strain DABAC 3, suggesting the occurrence of oxidative dehalogenation. The autochthonous fungi led to a significant decrease in soil toxicity, as assessed by both the Lepidium sativum L. germination test and the Collembola mortality test.


2009 ◽  
Vol 21 (3) ◽  
pp. 491-499 ◽  
Author(s):  
Naoki Harada ◽  
Kazuhiro Takagi ◽  
Koji Baba ◽  
Kunihiko Fujii ◽  
Akio Iwasaki

2021 ◽  
Author(s):  
Xueting Sun ◽  
Xin Li ◽  
Yue Cui ◽  
Ziwei Jiang ◽  
Qiao Wang ◽  
...  

Abstract This study was to explore the functional role of Comamonas testosteroni (Ct) on soil indigenous microorganisms, and analyze the effect of Ct on PAHs degradation in PAH-contaminated soil. Results showed that inoculation of Ct could degrade naphthalene (Nap), phenanthrene (Phe), and benzo [α] pyrene (BaP) significantly. The degradation rate of Nap, Phe and BaP was 81.18%, 63.38% and 37.98% on day 25, respectively, suggesting that the low molecular weight of Nap and Phe were easier to be degraded by microorganisms than BaP. Network analysis showed that inoculation of Ct significantly increased the bacteria closely related to PAHs. Structural equation models confirmed Steroidobacter as functional bacteria could affect the degradation of Nap and BaP. Inoculated Ct could effectively enhance the synergy among indigenous bacteria to degrade PAHs. This would be helpful to understand the function of inoculated strains in PAH-contaminated soil and identify functional microorganisms of PAHs remediation.


2021 ◽  
pp. 42-43
Author(s):  
Shriya Phadnis

The state of some plants being deprived from the availability of nitrogen causing nitrogen starvation leads to the phenomenon of Biological Nitrogen Fixation . Microorganisms are employed to enhance the availability of nitrogen to these plants. The major N2 - xing systems involve the symbiotic association between rhizobia soil bacteria and legumes. The enzymatic conversion of free nitrogen to ammonia occurs as a part of this symbiotic relationship. The signicant role of this phenomenon is enhancing the fertility of the soil and in the growth of the host plant that would otherwise be nitrogen limiting. This process has fascinated researchers in the agricultural sector for the yield of legume crops. This review article focuses on the benets that Rhizobium earns on being in mutualistic symbiosis with the leguminous plants.


2018 ◽  
Vol 5 (1) ◽  
pp. 93-111 ◽  
Author(s):  
James E. Schoelz ◽  
Lucy R. Stewart

Viruses are an important but sequence-diverse and often understudied component of the phytobiome. We succinctly review current information on how plant viruses directly affect plant health and physiology and consequently have the capacity to modulate plant interactions with their biotic and abiotic environments. Virus interactions with other biota in the phytobiome, including arthropods, fungi, and nematodes, may also impact plant health. For example, viruses interact with and modulate the interface between plants and insects. This has been extensively studied for insect-vectored plant viruses, some of which also infect their vectors. Other viruses have been shown to alter the impacts of plant-interacting phytopathogenic and nonpathogenic fungi and bacteria. Viruses that infect nematodes have also recently been discovered, but the impact of these and phage infecting soil bacteria on plant health remain largely unexplored.


2015 ◽  
Vol 94 (3) ◽  
pp. 282-288 ◽  
Author(s):  
K. Vaxevanidou ◽  
C. Christou ◽  
G. F. Kremmydas ◽  
D. G. Georgakopoulos ◽  
N. Papassiopi

1968 ◽  
Vol 21 (3) ◽  
pp. 579 ◽  
Author(s):  
DM Griffin ◽  
Gwen Quail

The role of the soil moisture regime in the ecology of soil bacteria is poorly understood. The response of the metabolic rates of bacteria to changes in matric suction has been investigated (Bhaumik and Clark 1947; Dommergues 1962; Clark 1967) but there is no precise information on the influence ofthe moisture regime on bacterial movement by flagellar activity or Brownian movement.


Sign in / Sign up

Export Citation Format

Share Document