scholarly journals EFFECT OF SEED TUBER SIZE AND PLANTING SPACE ON GROWTH, YIELD AND TUBER SIZE DISTRIBUTION OF POTATO (SOLANUM TUBEROSUM) IN IRRIGATED RED-YELLOW LATOSOLS OF THE DRY ZONE

1994 ◽  
Vol 22 (2) ◽  
pp. 115 ◽  
Author(s):  
S RAJADURAI
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Demis Fikre Limeneh ◽  
Fekadu Gebretensay Mengistu ◽  
Gizaw Wegayehu Tilahun ◽  
Dasta Tsagaye Galalcha ◽  
Awoke Ali Zeleke ◽  
...  

2007 ◽  
Vol 87 (4) ◽  
pp. 829-839 ◽  
Author(s):  
A. N. Cambouris ◽  
B. J. Zebarth ◽  
M. C. Nolin ◽  
M. R. Laverdière

This study evaluated the effect of rate and timing of N fertilizer application on tuber yield, tuber size distribution and tuber specific gravity of potato (Solanum tuberosum L.) in two sites in a commercial field in 1999–2001. One trial was established at each of the two sites chosen to represent two management zones (MZ) previously delineated by soil electrical conductivity, and differing in soil water availability, as controlled by depth to a clayey substratum. Each trial had 21 treatments including five rates of ammonium nitrate (0–200 kg N ha-1 in 1999; 0–240 kg N ha-1 in 2000 and 2001), each applied according to five application timings (100, 75, 50, 25 or 0% of N applied at planting with the remainder applied at hilling). Increasing N rate increased total and marketable tuber yields in both sites. The N rates required to optimize economic return ranged from 167 to 239 kg ha-1 among years and between sites. Nitrogen fertilizer applied all at planting or all at hilling decreased tuber yields in both sites compared with split N application. The percentage of N rate applied at planting to achieve the maximum marketable tuber yield varied among years from 34 to 61% and allowed a yield increase of 2 to 20%. The proportion of large tubers was higher in the site with a greater depth to the clayey substratum (DMZ site) than in the site with a shallower depth to the clayey substratum (SMZ site). Tuber yield and tuber N uptake were higher in the SMZ site than in the DMZ site when no fertilizer N was applied, and tuber yield was more responsive to fertilizer N rate in the DMZ site than in the SMZ site in one year; however, these differences are not sufficient to justify different fertilizer N management for the two sites. The two sites frequently differed in terms of tuber yield, tuber size and specific gravity, which are important parameters in determining tuber processing quality but the optimal N rate and N timing were similar. These differences may be sufficiently large to justify different potato management practices (e.g., nutrient management, seedpiece spacing) to optimize potato production for the chip processing market. Key words: Solanum tuberosum, marketable yield, tuber size distribution, specific gravity, N economic optimum


Author(s):  
J. K. Mhango ◽  
W. Hartley ◽  
W. E. Harris ◽  
J. M. Monaghan

Abstract Accurate estimation of tuber size distribution (TSD) parameters in discretely categorized potato (Solanum tuberosum L) yield samples is desirable for estimating modal tuber sizes, which is fundamental to yield prediction. In the current work, systematic yield digs were conducted on five commercial fields (N = 119) to compare the Weibull, Gamma and Gaussian distribution functions for relative-likelihood-based goodness-of-fit to the observed discrete distributions. Parameters were estimated using maximum likelihood estimation (MLE) for the three distributions but were also derived using the percentiles approach for the Weibull distribution to compare accuracy against the MLE approaches. The relationship between TSD and soil nutrient variability was examined using the best-fitting model's parameters. The percentiles approach had lower overall relative likelihood than the MLE approaches across five locations, but had consistently lower Root Mean Square Error in the marketable tuber size range. Negative relationships were observed between the percentile-based shape parameter and the concentrations of Phosphorus and Nitrogen, with significant (non-zero-overlapping 95% confidence interval) regression coefficients for P (−0.74 ± 0.33 for distribution of proportional tuber numbers and −1.3 ± 0.62 for tuber weights). Stem density was negatively associated with the scale and mode of tuber number (regression coefficients −0.98 ± 0.63 and −1.08 ± 0.78 respectively) and tuber weight (regression coefficients −0.99 ± 0.78 and −1.04 ± 0.69 respectively) distributions. Phosphorus is negatively related to the scale of the tuber-number-based distribution while positively associating with the tuber weight distribution. The results suggest that excess P application was associated with the increase in small tubers that did not contribute significant weight to the final yield.


1990 ◽  
Vol 82 (1) ◽  
pp. 88-90 ◽  
Author(s):  
J. B. Sanderson ◽  
R. P. White ◽  
H. W. Platt ◽  
J. A. Ivany

2001 ◽  
Vol 78 (4) ◽  
pp. 301-309 ◽  
Author(s):  
Walter J. Arsenault ◽  
Debby A. LeBlanc ◽  
George C. C. Tai ◽  
Peter Boswall

1976 ◽  
Vol 86 (2) ◽  
pp. 251-255
Author(s):  
D. C. E. Wurr

SummaryApplication of methyl decanoate to a potato crop about the time of tuber initiation reduced the total yield and the yield of tubers in the grade 2·5–5·5 cm though neither of these reductions were significant. However, application of 2,3,5-triiodobenzoic acid increased the yield of tubers 2·5–5·5 cm by up to 20% while having no significant effect on total tuber yield. This change in the tuber size distribution was due to a more even partition of photosynthate between tubers and not to an increase in the total number of tubers.


Sign in / Sign up

Export Citation Format

Share Document