Hymenopterous parasitoids of house fly and stable fly puparia in Prince Edward Island and New Brunswick, Canada

2007 ◽  
Vol 139 (5) ◽  
pp. 748-750 ◽  
Author(s):  
C. Noronha ◽  
G.A.P. Gibson ◽  
K.D. Floate

AbstractPuparia of house flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.) (Diptera: Muscidae), were collected on dairy farms in Prince Edward Island (PEI) and New Brunswick (NB) and held for emergence of hymenopterous parasitoids. Percent parasitism for PEI in 2003 and 2004 was 6.7 (n = 10 060 puparia) and 1.0 (n = 36 992 puparia), respectively. Percent parasitism for NB was not determined in 2003, but was 9.1% (n = 3052 puparia) in 2004. A parasitoid provisionally identified as Phygadeuon ?fumator Gravenhörst (Ichneumonidae) predominated in both provinces. Additional species recovered included Aphaereta pallipes (Say) (Braconidae) and Muscidifurax raptor Girault and Saunders, Spalangia cameroni Perkins (PEI only), Spalangianigra Latreille (NB only), Spalangia subpunctata Förster (NB only), Trichomalopsis americana (Gahan) (PEI only), and Urolepis rufipes (Ashmead) (Pteromalidae). Dissection of host puparia from which neither flies nor wasps emerged yielded a relatively large number of additional parasitoids, particularly S. nigra.

1999 ◽  
Vol 131 (6) ◽  
pp. 743-756 ◽  
Author(s):  
Tanja McKay ◽  
Terry D. Galloway

AbstractIn 1995, Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae), a commercially available pupal parasitoid of the house fly, Musca domestica L., and stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), was purchased to examine the status of wasps being sold to Manitoba producers. Percentage of pupae parasitized, numbers of parasitoids per pupa, total parasitoids, and parasitoid sex ratio were determined for each shipment of parasitoids received. To determine the extent to which these wasps could successfully parasitize house flies and stable flies, parasitoids were released weekly in four Manitoba dairy barns and levels of parasitism estimated. In 10 622 freeze-killed sentinel house fly pupae, 2.2% were parasitized throughout the season by N. vitripennis, and 5.8% were parasitized by eight other species of parasitoids. Of 11 897 naturally occurring house fly and stable fly pupae, 0.6% were parasitized by N. vitripennis, and 3.4% by eight other species of parasitoids. In four barns where there were no releases of N. vitripennis, 1.1% of 11 779 sentinel pupae were parasitized by four species of parasitoids and 3.8% of 8384 naturally occurring house fly and stable fly pupae were parasitized by nine species. The release of an estimated 3 648 093 N. vitripennis did not result in substantial parasitism in either sentinel pupae or naturally occurring pupae. In 1996, live sentinel house fly pupae (n = 50 842) and house fly and stable fly pupae occurring naturally (n = 4691) were collected in two of the nonrelease barns from the 1995 study to examine the activity of endemic parasitoids. Of the sentinel and naturally occurring pupae sampled, 4.0% and 9.4% were parasitized, respectively. Phygadeuon fumator Gravenhörst (Hymenoptera: Ichneumonidae) was the most abundant parasitoid, accounting for 97.4% and 79.9% of parasitoids collected from sentinel pupae and naturally occurring pupae, respectively. Other parasitoids included Urolepis rufipes (Ashmead), Muscidifurax raptor Girault and Sanders, Muscidifurax zaraptor Kogan and Legner, Spalangia subpunctata Först, Spalangia cameroni Perkins, Spalangia nigra Latreille, and a species of Trichomalopsis Crawford (Hymenoptera: Pteromalidae).


2004 ◽  
Vol 94 (6) ◽  
pp. 555-567 ◽  
Author(s):  
H. Skovgård ◽  
G. Nachman

AbstractThe efficacy of the pupal parasitoid Spalangia cameroni Perkins as a biological control agent was tested against house flies Musca domestica Linnaeus and stable flies Stomoxys calcitrans (Linnaeus) in one dairy cattle and two pig installations in Denmark. Weekly releases of S. cameroni from April through to September–October 1999 and 2000 resulted in significant suppressions of house fly populations to below nuisance level, whereas no effect on stable flies was found. Parasitism was significantly higher in the release years compared to the control years, but was below 25% averaged over the fly season for each farm. A statistical model based on a functional relationship between the innate capacity of increase of the two fly species and three explanatory variables (air temperature, fly density and parasitism) provided a fairly good fit to data with the abundances of house flies and stable flies explained mostly by temperature, but intra- and interspecific competition, and parasitism had a significant effect as well. Overall, the model was capable of explaining 14% and 6.6% of the total variation in data for house fly and stable fly, respectively. Spalangia cameroni was the predominant parasitoid to emerge from exposed house fly pupae, but from mid summer onwards Muscidifurax raptor Girault & Sanders (Hymenoptera: Pteromalidae) was also quite common. The study indicated that biological control of house flies can be an efficient alternative to chemical control.


2006 ◽  
Vol 69 (3) ◽  
pp. 671-673 ◽  
Author(s):  
F. MRAMBA ◽  
A. BROCE ◽  
L. ZUREK

Enterobacter sakazakii is an opportunistic foodborne pathogen that causes meningitis, enterocolitis, and sepsis, primarily in immunocompromised infants. Previously, it was suggested that stable flies, Stomoxys calcitrans, were a vector or reservoir of this pathogen. In our study, by means of a culturing approach combined with 16S rDNA PCR–restriction fragment length polymorphism genotyping and sequencing, we screened 928 individual stable flies collected in Kansas and Florida. Two stable flies (0.2%) were positive for E. sakazakii. In addition, 411 (44%) stable flies carried bacteria-forming red colonies (presumably enterics) on a violet red bile glucose agar (mean count = 6.4 × 104 CFU per fly), and 120 (13%) stable flies carried fecal coliforms (mean count = 8.7 × 103 CFU per fly). Sequencing of 16S rDNA showed that enterics from violet red bile glucose agar were represented by several genera, including Escherichia, Shigella, Providencia, Enterobacter, Pantoea, Proteus, Serratia, and Morganella. Our study shows that stable flies carry bacteria typically present in animal manure (a developmental site of stable fly larvae), which indicates that the natural reservoir of E. sakazakii is the digestive tract or manure of domestic animals. The low prevalence of E. sakazakii associated with stable flies suggests that stable flies do not play a major role as a reservoir or vector of this pathogen.


1975 ◽  
Vol 107 (6) ◽  
pp. 597-600 ◽  
Author(s):  
G. C. LaBrecque ◽  
Donald L. Bailey ◽  
D. W. Meifert ◽  
D. E. Weidhaas

AbstractIn outdoor cage studies undertaken in the late summer of 1973, a method of estimating the absolute density of a stable fly (Stomoxys calcitrans (L.)) population was developed by correlating the average number of insects feeding or resting on a calf to the total number in the cage. Under the same cage conditions, where emigration, immigration, and to some extent, predation have been excluded, the daily mortality rate of normal stable flies marked with a fluorescent dye ranged from 25.3% to 27.3% dependent upon the sampling technique. Marker dyes have a deleterious effect on survival but surprisingly gamma irradiated flies succumbed at a lower rate than normal individuals.


Acarologia ◽  
2018 ◽  
Vol 59 (1) ◽  
pp. 3-11
Author(s):  
Jenő Kontschán ◽  
Sándor Hornok

The stable fly, Stomoxys calcitrans (L.) is a blood-sucking muscid fly species, with a worldwide distribution and high veterinary-medical importance. In this study, four mite species were collected from stable flies in Hungary. One mite species (Trichotrombidium muscarum (Riley, 1878)) from the family Microtrombidiidae was parasitic on the flies, collected in high numbers from their bodies. The other three species were found in small numbers on the flies, which they use only for transportation. The latter included the phoretic female of Pediculaster mesembrinae (Canestrini, 1881) (Acari: Siteroptidae), the phoretic deutonymph of the Halolaelaps sexclavatus (Oudemans, 1902) (Acari: Halolaelapidae) and Macrocheles subbadius (Berlese, 1904) (Acari: Macrochelidae). This is the first record of an association between the stable fly and two mite species (Trichotrombidium muscarum and Halolaelaps sexclavatus). A new, completed list and identification key of known stable fly associated mites are also provided.


2019 ◽  
Vol 112 (5) ◽  
pp. 2469-2473 ◽  
Author(s):  
Tracey L Tam ◽  
Jerome Hogsette ◽  
Saundra TenBroeck

Abstract The stable fly, Stomoxys calcitrans (L.), is a bloodsucking ectoparasite that causes irritation and distress to livestock, wildlife, and humans. Both sexes are vicious blood-feeders that feed on a variety of animals. Optically attractive sticky traps have been used to capture stable flies, and some companies claim that sticky traps can protect animals from the bites of stable flies. To further investigate the protective ability of sticky traps, Home and Garden Mosquito (HGM) traps were selected for evaluations at the University of Florida Horse Teaching Unit (HTU). Broodmares coated with fluorescent dust were either tethered to a post in the center of a paddock or released untethered into a paddock. HGM sticky traps were placed at the four compass points and four selected distances from the paddock center to capture stable flies before (unmarked) or after (marked) they visited the horses. More than 40% of flies captured on traps placed closest to the horses were marked. This indicates that the traps did not prevent the flies from visiting the horses. A percentage of marked and unmarked stable flies showed signs of blood in their guts indicating recent feeding. For unknown reasons, the number of stable flies marked with Signal Green dust exceeded the numbers marked with other colors. Although the HGM traps caught ample numbers of stable flies, the traps did not prevent stable flies from feeding on the horses. More work is needed to determine optimal trap placement and densities required to maximize stable fly management with traps.


2016 ◽  
Vol 31 (1) ◽  
pp. 15-22 ◽  
Author(s):  
E. N. I. WEEKS ◽  
E. T. MACHTINGER ◽  
S. A. GEZAN ◽  
P. E. KAUFMAN ◽  
C. J. GEDEN

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Carlos Ramón Bautista Garfias ◽  
Tania Rodríguez ◽  
Carmen Rojas ◽  
José J. Lira ◽  
Jesús A. Álvarez ◽  
...  

Data on the implication of the stable fly (Stomoxys calcitrans, Diptera: Mus­cidae), in the transmission of Anaplasma marginale in tick-free cattle is scarce. Hence, the objective of this investigation was to detect the presence of DNA from A. marginale in stable flies caught near a bovine herd, which has been maintained free of ticks for 40 years, and occasionally presents some clinical cases of anaplasmosis. Twenty-four batches of S. calcitrans (15 flies each) were collected in the morning and in the afternoon twice a week (except for one catch in one week of September and one catch in one week of December) during 12 catching days in a period of four months. Their DNA was obtained and analysed by nested PCR (nPCR) to identify the presence of A. marginale DNA. Seven of the batches (29.16 %) were pos­itive for A. marginale, as detected by an nPCR that targets the A. marginale msp5 gene. Similarly, in two out of 12 catching days (16.66 %), those S. calcitrans batches collected in the morning and in the afternoon, were pos­itive for A. marginale, while those S. calcitrans groups collected in three out of 12 catching days (25 %), were positive for the rickettsia. The obtained re­sults suggest that A. marginale transmission is carried out mechanically by S. calcitrans, favouring the circulation and maintenance of the microorganism in this particular bovine herd.


2004 ◽  
Vol 136 (3) ◽  
pp. 407-417 ◽  
Author(s):  
G.A.P. Gibson ◽  
K.D. Floate

AbstractHymenopterous parasitoids of filth flies (Diptera: Muscidae) were surveyed during 2 years on dairy farms in Ontario and Quebec near Ottawa, Ontario, using freeze-killed sentinel house fly (Musca domestica L.) pupae and naturally occurring fly pupae collected on site. Musca domestica and Stomoxys calcitrans (L.) (stable fly) represented 98.3% of the natural fly hosts from which parasitoids emerged. Muscidifurax raptor Girault et Saunders, Nasonia vitripennis Walker, Pachycrepoideus vindemiae (Rondani), Spalangia cameroni Perkins, S. nigra Latreille, Trichomalopsis viridescens (Walsh), and Urolepis rufipes (Ashmead) (Pteromalidae) were recovered from both sentinel and natural fly pupae. Another eight species, S. drosophilae Ashmead, S. endius Walker, S. haematobiae Ashmead, S. nigroaenea Curtis, S. subpunctata Förster, Trichomalopsis dubia (Ashmead) (Pteromalidae), Aphaereta pallipes (Say) (Braconidae), and Phygadeuon ?fumator Gravenhörst (Ichneumonidae), were recovered only from natural pupae. Over the 2 years, M. raptor comprised 90.7% of emerged parasitoids from sentinel pupae but only 17.0% of emerged parasitoids from natural pupae. From natural pupae, S. cameroni, S. nigra, and S. nigroaenea collectively comprised 60.3% of emerged parasitoids; P. ?fumator comprised 13.5% and the remaining nine species 9.2%. The recoveries of S. endius and S. nigroaenea represent new distribution records for Canada, and several new host records are identified based on structure of the host fly puparium. The parasitoid fauna is compared with that known for western Canada, and recommendations are made for both regions concerning potential natural enemy enhancement for filth fly control.


Sign in / Sign up

Export Citation Format

Share Document