Lethal and sublethal effects of some insecticides recommended for wild blueberry on the pollinator Bombus impatiens

2012 ◽  
Vol 144 (3) ◽  
pp. 478-486 ◽  
Author(s):  
A.E. Gradish ◽  
C.D. Scott-Dupree ◽  
A.J. Frewin ◽  
G.C. Cutler

AbstractManaged and wild colonies of common eastern bumble bee (Bombus impatiens Cresson) (Hymenoptera: Apidae) are effective pollinators of wild blueberry (Vaccinium angustifolium Aiton) (Ericaceae) in Atlantic Canada. Because insecticides are used during bloom to manage insect pests, bumble bees may be at risk of exposure. We therefore assessed the susceptibility of B. impatiens to some insecticides used or projected for use in blueberry pest management. Workers were killed by topical applications of spinosad, spinetoram, deltamethrin, and phosmet, but not flubendiamide. Similarly, when ingested in honey solution, spinetoram and deltamethrin were toxic, whereas flubendiamide did not cause mortality up to double its recommended label rate. In another experiment, workers were fed one sublethal dose of contaminated honey solution and placed in microcolonies to assess impacts on feeding, life span, and reproduction. The highest concentration of deltamethrin (17 mg a.i./L) reduced feeding. Workers treated with deltamethrin had shortened life spans and produced fewer males. Flubendiamide (2000 mg a.i./L) and spinetoram (0.8 mg a.i./L) caused no sublethal effects. These results indicate that flubendiamide should be safe to apply to blueberries where B. impatiens is foraging, while some other insecticides we tested may be hazardous under different exposure scenarios.

2012 ◽  
Vol 144 (6) ◽  
pp. 779-791 ◽  
Author(s):  
G.C. Cutler ◽  
J.M. Renkema ◽  
C.G. Majka ◽  
J.M. Sproule

AbstractThe Carabidae (Coleoptera) are a diverse family of beetles with almost 300 species identified in Nova Scotia, Canada. Carabid beetle communities have been studied in several agricultural systems, but not wild blueberries, an important crop in eastern Canada. In the interest of potentially developing conservation biological control programs in wild blueberry, we collected Carabidae in crop (fruit-bearing) and sprout (vegetative) blueberry fields in Nova Scotia in order to assess species diversity and abundance over space and time. Over 3200 specimens were collected, representing 51 species. A large portion of collected specimens (39%) were nonnative, and the most abundant species were generally predacious and synanthropic. Species diversity tended to be higher near forest edges than further into fields, but not for all abundant species. Several of the most prominent predators showed significant differences in preference of crop versus sprout fields, distribution throughout fields, and seasonable abundance. These findings have implications for conservation biological control efforts with carabid beetles against several insect pests in wild blueberry.


Author(s):  
Sheng Sheng ◽  
Yan Song ◽  
Sheraz Ahmad ◽  
Jiao Wang ◽  
Ying Shao ◽  
...  

Abstract Parasitoid wasps are key agents for controlling insect pests in integrated pest management programs. Although many studies have revealed that the behavior of parasitic wasps can be influenced by insecticides, the strategies of patch time allocation and oviposition have received less attention. In the present study, we forced the endoparasitoid Meteorus pulchricornis to phoxim exposure at the LC30 and tested the foraging behavior within patches with different densities of the host, the larvae of the tobacco cutworm Spodoptera litura. The results showed that phoxim treatment can significantly increase the patch-leaving tendency of female wasps, while host density had no impact. The number of oviposition and the number of previous patch visits also significantly influenced the patch time allocation decisions. The occurrence of oviposition behavior was negatively affected by phoxim exposure; however, progeny production was similar among patches with different host densities. Phoxim exposure shaped the offspring fitness correlates, including longer durations from cocoon to adult wasps, smaller body size, and shorter longevity. The findings of the present study highlight the sublethal effects that reduce the patch residence time and the fitness of parasitoid offspring, suggesting that the application of phoxim in association with M. pulchricornis should be carefully schemed in agroecosystems.


2003 ◽  
Vol 83 (3) ◽  
pp. 583-586 ◽  
Author(s):  
E. Jeliazkova and D. Percival

To evaluate the influence of water exclusion on the mycorrhizal coloni zations in wild blueberry, and to examine the spatial distribution of mycorrhizae among roots of wild blueberry plants that were in both the vegetative and cropping stages of production, a randomized complete block design was used. The mycorrhizal coloniz a tions were equally distributed throughout upper and lower soil profiles in both stages of production. Nevertheless, soil moisture levels in water exclusion treatments were as much as 50% lower than the control, drought stress had no effect on mycorrhizal colonization levels or on any other of the measured responses. Root weight and volume decreased as soil depth increased from 0-7.5 to 7.5-15 cm. Key words:


2019 ◽  
Vol 112 (4) ◽  
pp. 1623-1633 ◽  
Author(s):  
Francis A Drummond ◽  
Elissa Ballman ◽  
Judith A Collins

Abstract Over a period of 5 yr (2012–2016), we conducted laboratory and field studies on activity, movement, and response to trap placement of adult Drosophila suzukii (Matsumura) in wild blueberry, Vaccinium angustifolium Aiton, fields in Maine. When measuring temporal patterns in fruit infestation, we found that D. suzukii females are most active in the morning and that they are 10 times more likely to lay eggs in blueberries at the top of the plant canopy compared with berries located in the lower part of the bush. Flies were found to be more abundant in fruit-bearing (crop) fields compared with pruned (vegetative) fields based on trap capture of adults. They are also most abundant along edges of fields compared with interiors. Trap efficiency is significantly better in traps 1.2 m above the ground and above the crop canopy of this low-growing crop plant than within the crop canopy. Three experiments involving the marking of laboratory-reared flies with fluorescent marker, their release, and capture with traps along a grid in fields suggest that: 1) fluorescent markers do not affect the distance moved of marked flies, 2) dispersal rates are not different between sexes, 3) there is little difference in the dispersal pattern through pruned fields and fruit-bearing fields, and 4) flies disperse at a low rate of 0.1–30 m per day, with an average of 5 m per day, but that long-distance dispersal over 1–2 km is feasible based on statistical model extrapolation.


2012 ◽  
Vol 92 (6) ◽  
pp. 1145-1154 ◽  
Author(s):  
Jatinder Kaur ◽  
David Percival ◽  
Lindsay J. Hainstock ◽  
Jean-Pierre Privé

Kaur, J., Percival, D., Hainstock, L. J. and Privé, J.-P. 2012. Seasonal growth dynamics and carbon allocation of the wild blueberry plant ( Vaccinium angustifolium Ait.). Can. J. Plant Sci. 92: 1145–1154. Field studies were conducted at the Wild Blueberry Research Station, Debert, NS, to examine the carbon allocation dynamics within the wild blueberry (Vaccinium angustifolium Ait.). This was achieved with biweekly measurements of dry weight, soluble sugar and starch levels of the rhizomes, roots, stems/leaves and berries of plants in the vegetative (i.e., sprout phase) and cropping phases of production. Non-structural carbohydrate levels were determined using high-performance liquid chromatography (HPLC). Growth parameters included phenology, stem height, dry weights of the above-ground vegetation (stems and leaves), berries, rhizomes and roots. Interestingly, root growth was observed prior to upright shoot emergence and dry weight for rhizome remained higher compared with stems and leaves. The rhizomes acted as a carbohydrate source during stem and root growth. The developing berry crop appeared to be a strong sink for photo-assimilates, as berries were found to import sucrose and convert it to fructose and glucose during maturation, and HPLC studies further confirmed the increasing levels of fructose and glucose. Given the phenology of the wild blueberry, the results exemplify the importance of the rhizomes as a strong carbohydrate source, especially in the early stages of a growing season when the carbohydrate production is limited.


1996 ◽  
Vol 128 (5) ◽  
pp. 957-958 ◽  
Author(s):  
Troy L. Whidden

Lowbush blueberry (Vaccinium angustifolium Ait., V. myrtilloides Michx.) growers often use colonies of the European honey bee (Apis mellifera L.) to supplement native bee populations for pollination. Native bee fauna is thought to be insufficient in number and too unpredictable, in terms of numbers, from year to year to be relied on for adequate crop pollination (Kevan and LaBerge 1978; Mackenzie and Winston 1984; Mohr and Kevan 1987; Kevan 1988; Eck 1988).


2020 ◽  
Vol 113 (5) ◽  
pp. 2380-2389
Author(s):  
Francis A Drummond ◽  
Judith A Collins

Abstract Rhagoletis mendax Curran (the blueberry maggot fly) is a major pest of wild blueberry. It is a direct pest of the fruit. Females lay eggs in fruit resulting in infestations of larvae unacceptable to most consumers. Three field perimeter interception tactics were tested for control of R. mendax in wild blueberry, Vaccinium angustifolium Aiton (Ericales: Ericaceae), between 2000 and 2010. We investigated field perimeter deployment of baited, insecticide-treated, green spheres (2000–2005), baited, yellow Trécé PHEROCON AM traps (2005 and 2006), and baited, Hopper Finder, sticky barrier tape (2008–2010). Only the Hopper Finder tape provided significant reduction in R. mendax adults and fruit infestation over the 3-yr field study. However, the reduction in fruit infestation compared with control plots was only 48.2 ± 7.3%, a level of reduction in damage that would be unsuitable for many commercial wild blueberry growers as a stand-alone tactic, but could be an important reduction as part of a multiple tactic IPM strategy. In addition, we constructed an agent-based computer simulation model to assess optimal trap placement between three patterns: 1) a single row of traps along field perimeter; 2) a double row of traps along the field perimeter at half the density of the single row; and 3) a grid of traps spread throughout the field but with the largest distance between traps. We found that the single row deployment pattern of traps was the best for reducing immigration of R. mendax adults into simulated fields.


Sign in / Sign up

Export Citation Format

Share Document