Spotted-Wing Drosophila (Diptera: Drosophilidae) Adult Movement, Activity, and Oviposition Behavior in Maine Wild Blueberry (Vaccinium angustifolium; Ericales: Ericaceae)

2019 ◽  
Vol 112 (4) ◽  
pp. 1623-1633 ◽  
Author(s):  
Francis A Drummond ◽  
Elissa Ballman ◽  
Judith A Collins

Abstract Over a period of 5 yr (2012–2016), we conducted laboratory and field studies on activity, movement, and response to trap placement of adult Drosophila suzukii (Matsumura) in wild blueberry, Vaccinium angustifolium Aiton, fields in Maine. When measuring temporal patterns in fruit infestation, we found that D. suzukii females are most active in the morning and that they are 10 times more likely to lay eggs in blueberries at the top of the plant canopy compared with berries located in the lower part of the bush. Flies were found to be more abundant in fruit-bearing (crop) fields compared with pruned (vegetative) fields based on trap capture of adults. They are also most abundant along edges of fields compared with interiors. Trap efficiency is significantly better in traps 1.2 m above the ground and above the crop canopy of this low-growing crop plant than within the crop canopy. Three experiments involving the marking of laboratory-reared flies with fluorescent marker, their release, and capture with traps along a grid in fields suggest that: 1) fluorescent markers do not affect the distance moved of marked flies, 2) dispersal rates are not different between sexes, 3) there is little difference in the dispersal pattern through pruned fields and fruit-bearing fields, and 4) flies disperse at a low rate of 0.1–30 m per day, with an average of 5 m per day, but that long-distance dispersal over 1–2 km is feasible based on statistical model extrapolation.

2020 ◽  
Author(s):  
Masayasu Taki ◽  
Keiji Kajiwara ◽  
Eriko Yamaguchi ◽  
Yoshikatsu Sato ◽  
Shigehiro Yamaguchi

Lipid droplets (LDs) are essential organelle in most eukaryotes, and tracking intracellular LDs dynamics using synthetic small molecules is crucial for biological studies. However, only a limited number of fluorescent markers that satisfy all requirements, such as the selective staining of LDs, high photostability, and sufficient biocompatibility, have been developed. Herein, we report a series of donor-p-acceptor dyes based on the thiophene-containing fused polycyclic scaffold [1]benzothieno[3,2-<i>b</i>][1]benzothiophene (BTBT), in which either or both thiophene rings are oxidized into thiophene-<i>S</i>,<i>S</i>-dioxide to form an electron-accepting building block. Among these dyes, LAQ1 satisfied all the aforementioned requirements, and allowed us capturing ultra-small LDs on the endoplasmic reticulum (ER) membrane by stimulation emission depletion (STED) microscopy with a super-resolution below the diffraction limit of light. Moreover, the extremely high photostability of LAQ1 enabled recording the lipolysis of LDs and the concomitant lipogenesis as well as long-term trajectory analysis of micro LDs at the single particle level in living cells.


2003 ◽  
Vol 83 (3) ◽  
pp. 583-586 ◽  
Author(s):  
E. Jeliazkova and D. Percival

To evaluate the influence of water exclusion on the mycorrhizal coloni zations in wild blueberry, and to examine the spatial distribution of mycorrhizae among roots of wild blueberry plants that were in both the vegetative and cropping stages of production, a randomized complete block design was used. The mycorrhizal coloniz a tions were equally distributed throughout upper and lower soil profiles in both stages of production. Nevertheless, soil moisture levels in water exclusion treatments were as much as 50% lower than the control, drought stress had no effect on mycorrhizal colonization levels or on any other of the measured responses. Root weight and volume decreased as soil depth increased from 0-7.5 to 7.5-15 cm. Key words:


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249673
Author(s):  
Sara Sario ◽  
Conceição Santos ◽  
Fátima Gonçalves ◽  
Laura Torres

Drosophila suzukii (spotted wing drosophila, SWD) is a pandemic quarantine pest that attacks mostly red fruits. The high number of life cycles per year, its ability to rapidly invade and spread across new habitats, and highly polyphagous nature, makes this a particularly aggressive invasive species, for which efficient control methods are currently lacking. The use of native natural predators is particularly promising to anchor sustainable and efficient measures to control SWD. While several field studies have suggested the presence of potential predatory species in infested orchards, only a few confirmed the presence of SWD DNA in predators’ gut content. Here, we use a DNA-based approach to identify SWD predators among the arthropod diversity in South Europe, by examining the gut content of potential predator specimens collected in SWD-infested berry fields in North Portugal. These specimens were morphologically identified to the family/order, and their gut content was screened for the presence of SWD DNA using PCR. New SWD predatory taxonomical groups were identified, as Opiliones and Hemerobiidae, in addition to known SWD predators, such as Hemerobiidae, Chrysopidae, Miridae, Carabidae, Formicidae and Araneae. Additionally, the presence of a spider family, Uloboridae, in the orchards was recorded for the first time, posing this family as another SWD-candidate predator. This study sets important bases to further investigate the potential large-scale use of some of these confirmed predator taxa for SWD control in South Europe.


2017 ◽  
Vol 110 (6) ◽  
pp. 2308-2317 ◽  
Author(s):  
Elissa S Ballman ◽  
Judith A Collins ◽  
Francis A Drummond

2022 ◽  
Vol 21 (2) ◽  
pp. 340-355
Author(s):  
Indrayuda Indrayuda ◽  
Mohd Effindi Samsuddin

This article reveals the changes in form and style of the Randai performance performed by the Minangkabau’s diaspora in Malaysia. The novelty of this research is the study of changes in forms and styles in Randai carried out by the Malaysian Minangkabau diaspora. The disconnection of socio-cultural communication and the long distance between Minangkabau and Peninsular Malaysia impacts the shift in forms and styles of Randai in the Minangkabau diaspora. This research was conducted qualitatively by designing research works such as pre-field studies, by collecting preliminary data based on a diffusion approach. In the field stage, the informants were selected by snowball sampling. The interview and observation instruments were designed based on the performance structure and performance procedures. Researchers conducted data analysis using the techniques recommended by Spradley, namely: (1) domain analysis, (2) taxonomic analysis, (3) componential analysis, and (4) discovering cultural themes. The study results revealed that the forms and styles were caused by mixing cultures between the diaspora and the Malaysian Malays. These changes were done so that the local community could accept Randai. In addition, Randai can be easily learned and cultivated by the Malay Malays and easily expressed by the Malaysian community and the Minangkabau diaspora as the perpetrators of Randai. These changes occur through a process of adaptation and acculturation. The implication of this research is the emergence of a new Randai model, namely Randai, which refers to local culture, both from the aspect of the story, Silat style, and music, as an identity and tradition for the Malaysian Minangkabau diaspora for the future.


2018 ◽  
Vol 5 (4) ◽  
pp. 63
Author(s):  
Troy Cloutier ◽  
Francis Andrew Drummond ◽  
Judith Collins

The recently introduced spotted wing drosophila is one of the most serious pests in small fruit production in the United States and Europe. Most control relies upon multiple applications of synthetic insecticides. In an effort to find less-toxic insecticides to consumers, farm workers, and wildlife, we conducted two laboratory trials and a semi-field trial in order to assess the potential for disodium octaborate tetrahydrateformulated and sold as Octabor®(U.S. Borax, Inc.) as a control for spotted wing drosophila in wild blueberry. We found that Octabor at 0.6 and 1.0% (w/v) applied to wild blueberry fruit resulted in higher mortality of flies than non-treated control fruit. Addition of sugar to Octabor enhanced mortality in one of the two trials, with an interaction between sugar addition and Octabor rate suggesting that the addition of sugar provided the greatest enhancement at the low rate. Our semi-field study showed that an apparent repellency effect of Octabor provided protection of fruit from infestation for up to 3 days. Also in the semi-field study, we observed a delayed effect on fly mortality. Increased fly mortality occurred over time, relative to the non-treated control fruit. The greatest fly mortality, relative to the non-treated control, resulted from flies being exposed to fruit treated 3 and 7 days prior to fly exposure, but not immediately after the treatment of Octabor. We speculate on why this type of delay in mortality might have occurred.    


2020 ◽  
Vol 113 (3) ◽  
pp. 1323-1336
Author(s):  
Francis A Drummond ◽  
Judith A Collins ◽  
Sara L Bushmann

Abstract During dispersal into fruit-bearing wild blueberry fields, blueberry maggot flies were highly active during all daylight hours as revealed by trap captures, although in one trial afternoon activity was greater than morning activity. Flies were not captured in traps at night, although observations in growth chambers showed that their activity at night, measured as displacement of position, was equal to daylight conditions. Flies were shown to fly at low altitude, just above the crop canopy, and screen fencing was shown to be effective at reducing colonization of plots, presumably due to their low height during flight. Over a 4-yr mark–capture study, colonization rate was shown to be low at 9.7 m/d, although a separate 2010 study showed higher rates at 14.1 and 28.0 m/d. Movement was shown to be nondirectional or random in the field, but a constrained random walk exhibiting direction into the field. Weed cover and high fruit density were associated with higher fly relative abundance, suggesting these field characteristics served as attractors slowing colonization rate into a field. Transect trap studies showed the temporal and spatial pattern of fly colonization into commercial wild blueberry fields, one of a slow wave that penetrates into the field interior as the season progresses. There is also an increase in fly abundance within-field edges and adjacent forest. The ‘stacking’ of flies along a field edge and slow movement rate into a field was shown through simulation to be a result of nondirectional short-distance dispersal of flies.


2010 ◽  
Vol 76 (17) ◽  
pp. 5745-5756 ◽  
Author(s):  
Mathias Schmelcher ◽  
Tatiana Shabarova ◽  
Marcel R. Eugster ◽  
Fritz Eichenseher ◽  
Vincent S. Tchang ◽  
...  

ABSTRACT The genus Listeria comprises food-borne pathogens associated with severe infections and a high mortality rate. Endolysins from bacteriophages infecting Listeria are promising tools for both their detection and control. These proteins feature a modular organization, consisting of an N-terminal enzymatically active domain (EAD), which contributes lytic activity, and a C-terminal cell wall binding domain (CBD), which targets the lysin to its substrate. Sequence comparison among 12 different endolysins revealed high diversity among the enzyme's functional domains and allowed classification of their CBDs into two major groups and five subclasses. This diversity is reflected in various binding properties, as determined by cell wall binding assays using CBDs fused to fluorescent marker proteins. Although some proteins exhibited a broad binding range and recognize Listeria strains representing all serovars, others target specific serovars only. The CBDs also differed with respect to the number and distribution of ligands recognized on the cells, as well as their binding affinities. Surface plasmon resonance analysis revealed equilibrium affinities in the pico- to nanomolar ranges for all proteins except CBD006, which is due to an internal truncation. Rapid multiplexed detection and differentiation of Listeria strains in mixed bacterial cultures was possible by combining CBDs of different binding specificities with fluorescent markers of various colors. In addition, cells of different Listeria strains could be recovered from artificially contaminated milk or cheese by CBD-based magnetic separation by using broad-range CBDP40 and subsequently identified after incubation with two differently colored CBD fusion proteins of higher specificity.


Sign in / Sign up

Export Citation Format

Share Document