Long-term fruit fly monitoring and impact of the systems approach on richness and abundance

2021 ◽  
pp. 1-20
Author(s):  
Mayara R. de Araujo ◽  
David dos S. Martins ◽  
Maurício J. Fornazier ◽  
Keiko Uramoto ◽  
Paulo S.F. Ferreira ◽  
...  

Abstract We investigated ecological patterns of richness and abundance of Anastrepha fruit flies, based on a long-term series with a dataset from 1998 to 2010, subdivided into four subseries describing pest management through the systems approach (integration of different measures, at least two of which act independently, with cumulative effects), and its impact on abundance and diversity of fruit flies. Richness and abundance were influenced by time and distance but to different extents. Spatio-temporal analysis taking into account the implementation of the systems approach revealed clear effects of the pest management on fruit fly richness and abundance. However, abundance was affected by the systems approach three years before richness was. Abundance and richness also showed different relationships with time and distance between orchards and forest. The Gompertz model, used to describe the relationship between area and species richness, was the function that showed the best fit to the data. The richness-partitioning analysis, which decomposes beta diversity, indicated different distributions of richness values and predictions for additive partitioning that were directly associated with the implementation of the systems approach. The spectral analysis projected different trends for peaks, indicating that the systems approach is able to delay the time for new population peaks of fruit flies.

Author(s):  
Adalton Raga ◽  
Ester Marques De Sousa ◽  
Léo Rodrigo Ferreira Louzeiro

Fruit flies (Diptera: Tephritidae) cause significant losses during the production and marketing of horticultural products. Brazilian growers usually adopt full-coverage insecticide spraying to control fruit flies, but toxic bait is a more strategic technique, because reach efficacy and the target surface is the foliage and branches. We provide information regarding the toxicity of spinetoram bait to two fruit fly species in the laboratory as an alternative to organophosphates and the specific spinosad formulation. We tested toxic baits in the laboratory, using commercial hydrolysed corn protein (10% v/v) plus 90 g, 120 g, 150 g and 180 g dilutions of spinetoram 250 WG (commercial product/1,000 litres of water). All toxic baits were compared with an untreated control (only protein) for the adults of females and males of Anastrepha obliqua (Macquart, 1835) and Ceratitis capitata (Wiedemann, 1824) up to 30 hours of exposure. Dry food for adults was included in all dilutions (5% w/v). In addition, we tested the residual effect of toxic baits applied to the leaves of mandarin seedlings. We used the same treatments of the earlier bioassay without dry food, collecting treated leaves and exposing them to C. capitata (medfly) females for 24 hours in the laboratory. Leaves were collected 1, 3, 7, 15 and 30 days after application. Overall, medfly adults were more susceptible to spinetoram baits than A. obliqua. All toxic baits resulted in 100% C. capitata mortality 24 hours after initial exposure, and the toxic bait at 150 g/1,000 L of water resulted in the maximum mortality (96%) in A. obliqua. Except for 90 g of spinetoram bait at 30 days after application, all spinetoram bait concentrations resulted in significantly, more dead C. capitata females than the control over all tested periods in the residual bioassay. At 30 days after application, spinetoram baits at 120 g, 150 g and 180 g resulted in 85%, 87% and 86% mortality in C. capitata, respectively. Spinetoram toxic baits have proven promising for long-term fruit fly management.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 278 ◽  
Author(s):  
Beatrice W. Muriithi ◽  
Nancy G. Gathogo ◽  
Gracious M. Diiro ◽  
Samira A. Mohamed ◽  
Sunday Ekesi

To sustain agricultural development in Africa, innovative strategies for addressing a myriad of biotic and abiotic constraints facing the agricultural systems must be established. One current biotic stress is the mango infesting fruit flies. In the effort to contain the widely spreading and damaging invasive species of tephritid fruit fly (Bactrocera dorsalis) (Hendel), an area-wide integrated pest management (IPM) program is being promoted in the horticultural sub-sector in sub-Saharan Africa. Such a new technology in which farmers have limited information before commercialization may have diffusion paths that are different from the often-assumed sigmoid (or “s”) shaped curve. We apply the descriptive and econometric analysis of ex ante and ex post integrated fruit fly management used by mango farmers in Kenya and Ethiopia. The results reveal that this technology has a relatively high adoption rate and high prospects for adoption growth in Kenya compared to Ethiopia in the near future.


2020 ◽  
Vol 10 (10) ◽  
pp. 3343
Author(s):  
Piotr Grzempowski ◽  
Janusz Badura ◽  
Wojciech Milczarek ◽  
Jan Blachowski ◽  
Tadeusz Głowacki ◽  
...  

Wrocław is a major city located in the southwestern part of Poland in an aseismic tectonic fault zone. Slow, long-term, vertical displacements have been observed there from the 1930s based on the levelling network measurements with the use of a precise levelling method. Due to the high cost of classic surveys, these were performed at intervals of several decades and the most recent measurement of ground surface displacement was performed in 1999. The main aim of this study is to determine the ground surface displacements on the area of Wrocław in the 1995–2019 period, the spatio-temporal analysis of deformations and the identification of the potential factors causing these deformations. To determine the ground movements, an advanced PSI technique and data from ERS-2, Envisat, and Sentinel-1 sensors were used. Application of SAR technology for the first time in this area, provided new knowledge about the process of deformation in short time intervals over the entire area of the city. The results verify the hypothesis on the linearity of displacements obtained from historical geodetic observations. The obtained results show that the displacements, which continue to occur in the area of Wrocław have a cyclic character with 4–5 year long period of subsidence and 2–3 year long periods of stabilization or uplift. The displacement trends indicate that the area of the city gradually subsides in relation to the reference area located on the Fore-Sudetic Block.


Author(s):  
Sabah ALMAHROUQI ◽  
Mohammed SABER ◽  
Tetsuya TAKEMI ◽  
Sameh A. KANTOUSH ◽  
Tetsuya SUMI

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250731
Author(s):  
Paolo Salazar-Mendoza ◽  
Ivan Peralta-Aragón ◽  
Ladislao Romero-Rivas ◽  
Jordano Salamanca ◽  
Cesar Rodriguez-Saona

Lower elevations are generally thought to contain a greater abundance and diversity of insect communities and their natural enemies than higher elevations. It is less clear, however, how changes in seasons influence this pattern. We conducted a 2-year study (2013‒2014) in guava orchards located in a tropical Andean forest of Peru to investigate differences in fruit flies (Diptera: Tephritidae) and their parasitoid communities at two elevations and over two seasons. Fruit fly traps were installed, monitored, and guava fruits were sampled from eight orchards at low (800–950 m above sea level) and high (1,700–1,900 m above sea level) elevations and during the dry and rainy seasons. At each orchard, adult fruit fly trap captures and emergence of fruit flies and their parasitoids from guava fruit were quantified to determine their abundance and species composition. There was a greater abundance and species richness of fruit flies captured in traps at lower elevations, as well as higher abundance and species evenness of fruit flies that emerged from fruit, indicating that lower elevations are associated with larger fruit fly populations. The abundance, species richness and diversity of parasitoids were also greater at lower elevations. Consequently, guava fruit infestation and fruit fly parasitism rates were also greater at lower elevations. Seasonality also influenced fruit fly populations with a greater number of flies emerging from guava fruit and more fruit infested in the rainy season. However, seasonality had no effect on parasitoid population parameters or rate of parasitism, nor did it interact with elevation as an influence of populations of fruit flies or their parasitoids in guava orchards. This study highlights the importance of examining both elevation and seasonality for a better understanding of the population dynamics of fruit flies and their parasitoids in tropical agroecosystems.


2020 ◽  
Vol 11 (S1) ◽  
pp. 68-84 ◽  
Author(s):  
Soumia Mellak ◽  
Doudja Souag-Gamane

Abstract Drought mitigation and prevention require a broader knowledge of the spatio-temporal characteristics and return periods of droughts over several years. In this research, drought characteristics (severity, duration, frequency and areal extent) have been analysed in northern Algeria by using the Standardized Precipitation Index to identify drought events from 194 precipitation stations. For frequency analysis, three Archimedean copula families were used to find a relationship between drought duration and severity. The severity–duration–frequency (SDF) and the severity–area–frequency (SAF) curves were obtained. The SDF and SAF curves are then used to build three-dimensional surfaces of drought severity, drought duration and cumulated percentage of the affected area (SDA) for each return period. It has been shown that the return periods of maximum drought events severity vary according to their durations. To address the issue of long-term droughts, a new classification of dry events based on drought severities is proposed. The obtained results show that the western part of Algeria is the most sensitive to severe/extreme droughts of short durations and high probabilities of exceedance. For long-term durations, the study area was sensitive to mild droughts with lower probabilities.


2019 ◽  
Vol 110 (1) ◽  
pp. 1-14 ◽  
Author(s):  
M.S. Noman ◽  
L. Liu ◽  
Z. Bai ◽  
Z. Li

AbstractTephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the generaAnastrepha, Bactrocera, Ceratitis,andRhagoletis.Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera ofKlebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia,andProvidenciaconstitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.


2020 ◽  
Vol 2 (1) ◽  
pp. 41-50
Author(s):  
Caroline Muriuki ◽  
◽  
Mary Guantai ◽  
Namikoye Samita ◽  
Joseph Mulwa ◽  
...  

Fruits and vegetables are important source of livelihood to farmers and major horticulture sub sector with high contribution to agricultural GDP in Kenya. This study was conducted to determine diversity and abundance of frugivorous fruit flies in Kandara sub county, Murang’a County in 2018, at a place where first area of low pest population was created in Kenya for Bactrocera dorsalis. Three sets of pheromone traps (Methyl-Eugenol, Cuelure and Trimedlure) were set in six trap stations within farmers’ orchards in four agro-ecological zones (LH1 (Lower Highland Zone), UM1 (Upper Mid-land Zone), UM2, and UM3). The trap catch data was collected fortnightly and data analyzed. Six fruit flies species namely; Bactrocera dorsalis, Ceratitis cosyra, Ceratitis capitata, Zeugodacus cucurbitae, Dacus bivittatus and Perilampsis sp were identified. Bactrocera dorsalis population was significantly (P<.001) different across the four agro-ecologies with lowest densities at LH1 and highest at UM3. Likewise, C. capitata recorded significant (P=0.042) difference densities across the agro-ecological zones, but no significant (P=0.386) difference was recorded for C. cosyra across the agro-ecological zones. Further, there was significant (P=0.012) difference in the number of Perilampsis sp across the agro-ecologies with the highest number recorded in UM1. Both Z. cucurbitae (P=0.061) and D. bivittatus (P=0.056) had low abundance across the agro-ecologies. The peak infestation period differed across the various fruit fly species, whereby B. dorsalis peaked in May, C. capitata in February and C. cosyra in January. The study shows that abundance for the fruit flies is probably related to their preferred hostplant and the weather patterns. We recommend continuous monitoring and intensifying trapping activities during peak periods in order to control the pest and protect fruits from damage. Farmers should be trained on the use of pheromone traps to reduce over-reliance on pesticides. Key words: Agro-ecologies, Bactrocera dorsalis, Ceratitis sp, fruit fly density, Pheromone


Sign in / Sign up

Export Citation Format

Share Document