A Nonlinear Dynamic Substructuring Approach for Efficient Detailed Global Analysis of Flexible Risers

2013 ◽  
Author(s):  
Michel W Dib ◽  
Philip Adrian Cooper ◽  
Shankar Bhat ◽  
Arya Majed
Author(s):  
Junpeng Liu ◽  
Jinsheng Ma ◽  
Murilo Augusto Vaz ◽  
Menglan Duan

Abstract Mechanical behavior of flexible risers can be challenging due largely to its complex design generating strong nonlinear problems. Nonlinear material properties, as one of them, from polymer layers dominate the overall viscoelastic responses of flexible risers which may play an inevitable role on the global analysis in deepwater application. An alternative to predict the viscoelastic behavior comprising of the time domain and the frequency domain has been proposed recently by the authors (Liu and Vaz, 2016). Given the fact that polymeric material properties are temperature-dependent and that the temperature profiles in flexile risers vary continuously in both axial and radial direction, the temperature of the internal hydrocarbons must affect the viscoelastic responses. However, such phenomenon dose not draw much attention in previous studies. This paper presents an improved model for overcoming some drawbacks in the proposed model involving assumption of steady temperature distribution in polymer layer and no gap appearance between the adjacent layers. The computing method of model is developed by using a step by step test approach. Consequently, some important parameters like equivalent axial stiffness, contact pressure or gap between the near layers, and force-deformation relationship can be observed. Parametric studies are conducted on the axisymmetric viscoelastic behavior of flexible risers to study the role of input temperature and loading frequency. Results show that equivalent axial stiffness given by the improved model is smaller than before. It can also be found that the gap between metal layer and polymer layer appear easily and increases as time goes on.


1994 ◽  
Vol 04 (01) ◽  
pp. 93-98 ◽  
Author(s):  
L. FINGER ◽  
H. UHLMANN

An enhancement of the classical Runge—Kutta technique for numerical simulations is presented for the computer-aided global analysis of nonlinear dynamic circuits/systems. With Runge—Kutta triples a remarkable saving of calculation time can be achieved by using an interpolation polynomial for dense output. The Runge—Kutta triples are applied to calculate the Poincaré map for autonomous models/systems.


1992 ◽  
Vol 02 (01) ◽  
pp. 101-115 ◽  
Author(s):  
JEFFREY M. FALZARANO ◽  
STEVEN W. SHAW ◽  
ARMIN W. TROESCH

Ship capsizing is a highly nonlinear dynamic phenomenon where global system behavior is dominant. However the industry standards for analysis are limited to linear dynamics or nonlinear statics. Until recently, most nonlinear dynamic analysis relied upon perturbation methods which are severely restricted both with respect to the relative size of the nonlinearity and the region of consideration in the phase space (i.e., they are usually restricted to a small local region about a single equilibrium), or on numerical studies of idealized system models. In this work, recently developed global analysis techniques (e.g., those found in Guckenheimer and Holmes [1986], and Wiggins [1988, 1990]) are used to study transient rolling motions of a small ship which is subjected to a periodic wave excitation. This analysis is based on determining criteria which can predict the qualitative nature of the invariant manifolds which represent the boundary between safe and unsafe initial conditions, and how these depend on system parameters for a specific ship model. Of particular interest is the transition which this boundary makes from regular to fractal, implying a loss in predictability of the ship’s eventual state. In this paper, actual ship data is used in the development of the model and the effects of various ship and wave parameters on this transition are investigated. Finally, lobe dynamics are used to demonstrate how unpredictable capsizing can occur.


2001 ◽  
Vol 11 (PR5) ◽  
pp. Pr5-293-Pr5-300 ◽  
Author(s):  
V. V. Silberschmidt ◽  
M. Ortmayr ◽  
C. Messner ◽  
E. A. Werner

Sign in / Sign up

Export Citation Format

Share Document