Development of Design Criteria and NDE Method for HPHT Equipment

2021 ◽  
Author(s):  
Dilip Parth Pathak ◽  
Kishore Padmanabha ◽  
Robert Joseph Wilhelmi ◽  
Luiz Henrique Velloso Coutinho ◽  
Venkata Rao Brahmaji Vampati Veera

Abstract Subsea production systems have been using API-specified methods and detection criteria for nondestructive examination (NDE) for equipment up to 15,000-psi rated working pressure. With higher pressure requirements and use of methods for evaluation of the fatigue life of HPHT equipment, existing criteria cannot be sufficient to achieve the desired fatigue life. This paper demonstrates more stringent design criteria and a detection method that was developed to achieve HPHT fatigue life, yet is cost and schedule effective. When fracture mechanics was used for fatigue life estimation, an initial flaw size is stated as a starting point in determining design life. Using API-specified NDE criteria of 1/16-inch detection of surface flaw, project design life was not achieved for certain components without a major redesign and retest. Smaller flaw lengths were preferred in critical areas instead of standard flaw sizes. This created a need for a high-sensitivity penetrant inspection technique to effectively detect this new minimum flaw size in critical areas. Various methods of NDE were considered, and a conclusion was taken in selecting the best inspection method. Fracture mechanics and finite element analysis required a minimum detectable flaw size length of 1/32 inch to meet the project design life without changing equipment technology. By using surface NDE with fluorescent liquid dye penetrant of sensitivity levels 2 and 3, all seeded flaws of 1/32-inch were consistently detected in the validation test coupon, which enabled the use of this stricter criteria for the analysis. Detailed procedures were established, and validation testing results were documented with photographs of detected flaws. Seeded flaw coupons were manufactured for validation of procedures and to train the various facilities that will use these techniques for production equipment. Additionally, procedures and guidelines were provided to inspectors and inspection facilities to ensure proper implementation of the methods. Measurement system analysis for repeatability and reproducibility was conducted at the facilities. This enabled the fatigue design of the HPHT equipment to advance beyond the boundaries of traditional methods and acceptance criteria set by current industry standards. New and tighter acceptance criteria were developed to improve HPHT fatigue life. High-sensitivity penetrant inspection technique, capable of detecting flaw sizes as small as 1/32-inch, was established and implemented. This inspection technique is not common to the oil and gas industry because of the ability of standard methods to readily detect the API-required criteria. The method has improved detection capabilities and has the potential to move toward adopting advanced design methods to address HPHT requirements.

Author(s):  
Mario L. Macia ◽  
Jaime Buitrago ◽  
Wan Kan ◽  
Barron Bichon ◽  
Jonathan Moody ◽  
...  

Current fatigue design of fracture-critical components, such as tendons and risers, requires dual fatigue life criteria to be satisfied. The S-N approach includes a safety factor (SF) of 10 on the life of the component, while the fracture mechanics (FM) approach includes a safety factor of 5 on the life through-thickness of an acceptable initial flaw. FM provides critical initial flaw sizes such that suitability of the selected NDE methods and weld acceptance criteria can be established. This paper pertains to a comparative fatigue life reliability study between those two approaches. The objective is to develop a rationale for the selection of a safety factor on fatigue life to use in FM calculations. A reliability-based methodology is proposed and implemented. The SFs for FM are obtained by targeting the reliability obtained in fatigue designs based on historically proven S-N damage approach. Random variables entering both approaches were characterized and a number of weld design cases devised to obtain reliabilities. One important variable is the distribution of initial flaw sizes. For this study, flaw distributions were developed from actual inspection records, accounting for the effects of probability of detection and sizing accuracy of the inspection system, as well as the flaw acceptance criteria during fabrication. Comparisons of reliabilities obtained for designs by both approaches for various quality S-N curves, stress spectra, pipe sizes, and initial flaw sizes indicate that there is ample scope to modify downward the current FM safety factor. However, given the limited scope of this study, it is recommended to asses the FM SF using reliability analysis on a project-specific basis.


Author(s):  
Katsumasa Miyazaki ◽  
Kunio Hasegawa ◽  
Naoki Miura ◽  
Koichi Kashima ◽  
Douglas A. Scarth

Acceptance Standards in Section XI of the ASME Boiler and Pressure Vessel Code have an important role as the first step in the flaw evaluation procedure. When a flaw size is within the allowable flaw size in the Acceptance Standard, the flaw is acceptable and analytical evaluation is not required. Although ASME Section XI has Acceptance Standards for Class 1 piping in IWB-3500, there are no Acceptance Standards for Class 2 and 3 piping. Furthermore, the development of the current Acceptance Standards for Class 1 piping was based on flaw detectability by ultrasonic inspection and consideration of fracture mechanics. In this paper, the development of proposed new Acceptance Standards for Class 2 and 3 piping, as well as for Class 1 piping, is described. The development methodology is based on a fracture mechanics approach. For Class 1 piping with high fracture toughness, the allowable flaw sizes were determined by limit load solution. For Class 1 piping, the intent was to maintain overall consistency with the current Acceptance Standards. Proposed Acceptance Standards for Class 2 and 3 austenitic piping were also developed by the methodology used to develop the proposed new Acceptance Standards for Class 1 piping. Allowable flaw sizes for both surface flaws and subsurface flaws for preservice and inservice examinations were developed.


2011 ◽  
Vol 201-203 ◽  
pp. 2476-2480
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The in-phase and out-of-phase thermal fatigue of aluminum alloy were experimentally studied. The fatigue life was evaluated analytically by using the elastic-plastic fracture mechanics method (mainly J integral). The results of experiments and calculations showed that the life of out-of-phase fatigue was longer than that of in-phase fatigue within the same strain range. This is the same as the results of other materials such as medium and low carbon steel. On the other hand, the predicted life was consistent with experimental results. This suggests that J integral as a mechanics parameter for characterizing the thermal fatigue strength of aluminum alloy and the calculation method developed here is efficient. A parameter ΔW was proposed from energy aspect to characterize the capacity of crack propagation. The in-phase thermal fatigue life was the same as the out-of-phase thermal fatigue life for identical ΔW values.


2013 ◽  
Vol 361-363 ◽  
pp. 1727-1734
Author(s):  
Meng Qi Gao ◽  
Ping Ying Wang ◽  
He Ping Ding

To study the fatigue life of asphalt pavement under traffic loads, a 3-D finite element analysis (FEA) Visio-elastic road model was established on the layered theory with ANSYS software. The fatigue damage was calculated with the maximum horizontal tensile strain of asphalt layer bottom based on the fatigue fracture mechanics, when single axis went across. Then the fatigue life was obtained after the fatigue damage occurred in some degree by the Miners linear cumulative damage rule. The results show that it taken 3.4 years when the damage area reached 10% of wheel path area, and 4.5years when reached 45%; while the calculated result was 5.5 years by axial-load conversion method. The analysis shows that the fatigue life of asphalt pavement calculated by fatigue fracture mechanics rule has more significance in practice.


2021 ◽  
Vol 79 (8) ◽  
pp. 797-804
Author(s):  
Anmol Birring

Phased array ultrasonic testing (PAUT) has become a popular nondestructive technique for weld inspections in piping, pressure vessels, and other components such as turbines. This technique can be used both in manual and automated modes. PAUT is more attractive than conventional angle-beam ultrasonic testing (UT), as it sweeps the beam through a range of angles and presents a cross-sectional image of the area of interest. Other displays are also available depending on the software. Unlike traditional A-scan instruments, which require the reconstruction of B- and C-scan images from raster scanning, a phased array image is much simpler to produce from line scans and easier to interpret. Engineering codes have incorporated phased array technology and provide steps for standardization, scanning, and alternate acceptance criteria based on fracture mechanics. The basis of fracture mechanics is accurate defect sizing. There is, however, no guidance in codes and standards on the selection and setup of phased array probes for accurate sizing. Just like conventional probes, phased array probes have a beam spread that depends on the probe’s active aperture and frequency. Smaller phased array probes, when used for thicker sections, result in poor focusing, large beam spread, and poor discontinuity definition. This means low resolution and oversizing. Accurate sizing for fracture mechanics acceptance criteria requires probes with high resolution. In this paper, guidance is provided for the selection of phased array probes and setup parameters to improve resolution, definition, and sizing of discontinuities.


Sign in / Sign up

Export Citation Format

Share Document