scholarly journals Aberrant V(D)J Recombination in Ataxia Telangiectasia Mutated-Deficient Lymphocytes Is Dependent on Nonhomologous DNA End Joining

2008 ◽  
Vol 181 (4) ◽  
pp. 2620-2625 ◽  
Author(s):  
Andrea L. Bredemeyer ◽  
Ching-Yu Huang ◽  
Laura M. Walker ◽  
Craig H. Bassing ◽  
Barry P. Sleckman
Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1143
Author(s):  
Yoshihisa Matsumoto ◽  
Anie Day D. C. Asa ◽  
Chaity Modak ◽  
Mikio Shimada

The DNA-dependent protein kinase (DNA-PK) is composed of a DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ku70/Ku80 heterodimer. DNA-PK is thought to act as the “sensor” for DNA double-stranded breaks (DSB), which are considered the most deleterious type of DNA damage. In particular, DNA-PKcs and Ku are shown to be essential for DSB repair through nonhomologous end joining (NHEJ). The phenotypes of animals and human individuals with defective DNA-PKcs or Ku functions indicate their essential roles in these developments, especially in neuronal and immune systems. DNA-PKcs are structurally related to Ataxia–telangiectasia mutated (ATM), which is also implicated in the cellular responses to DSBs. DNA-PKcs and ATM constitute the phosphatidylinositol 3-kinase-like kinases (PIKKs) family with several other molecules. Here, we review the accumulated knowledge on the functions of DNA-PKcs, mainly based on the phenotypes of DNA-PKcs-deficient cells in animals and human individuals, and also discuss its relationship with ATM in the maintenance of genomic stability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munetoshi Maeda ◽  
Masanori Tomita ◽  
Mika Maeda ◽  
Hideki Matsumoto ◽  
Noriko Usami ◽  
...  

AbstractWe recently showed that when a low X-ray dose is used, cell death is enhanced in nucleus-irradiated compared with whole-cell-irradiated cells; however, the role of the cytoplasm remains unclear. Here, we show changes in the DNA damage responses with or without X-ray microbeam irradiation of the cytoplasm. Phosphorylated histone H2AX foci, a surrogate marker for DNA double-strand breaks, in V79 and WI-38 cells are not observed in nucleus irradiations at ≤ 2 Gy, whereas they are observed in whole-cell irradiations. Addition of an ataxia telangiectasia mutated (ATM) kinase inhibitor to whole-cell irradiations suppresses foci formation at ≤ 2 Gy. ABL1 and p73 expression is upregulated following nucleus irradiation, suggesting the induction of p73-dependent cell death. Furthermore, CDKN1A (p21) is upregulated following whole-cell irradiation, indicating the induction of cell cycle arrest. These data reveal that cytoplasmic radioresponses modify ATM-mediated DNA damage responses and determine the fate of cells irradiated at low doses.


2021 ◽  
Vol 22 (4) ◽  
pp. 1504
Author(s):  
Rüveyda Dok ◽  
Mary Glorieux ◽  
Marieke Bamps ◽  
Sandra Nuyts

Radiotherapy (RT) has a central role in head and neck squamous cell carcinoma (HNSCC) treatment. Targeted therapies modulating DNA damage response (DDR) and more specific cell cycle checkpoints can improve the radiotherapeutic response. Here, we assessed the influence of ataxia-telangiectasia mutated and Rad3-related (ATR) inhibition with the ATR inhibitor AZD6738 on RT response in both human papillomavirus (HPV)-negative and HPV-positive HNSCC. We found that ATR inhibition enhanced RT response in HPV-negative and HPV-positive cell lines independent of HPV status. The radiosensitizing effect of AZD6738 was correlated with checkpoint kinase 1 (CHK1)-mediated abrogation of G2/M-arrest. This resulted in the inhibition of RT-induced DNA repair and in an increase in the percentage of micronucleated cells. We validated the enhanced RT response in HPV-negative and HPV-positive xenograft models. These data demonstrate the potential use of ATR inhibition in combination with RT as a treatment option for both HPV-negative and HPV-positive HNSCC patients.


Sign in / Sign up

Export Citation Format

Share Document