Post-harvest loss in Mozambique - Estimating maize loss in Manica and Zambezia provinces

2021 ◽  
2014 ◽  
Author(s):  
Guenevere Perry ◽  
Diane Williams

The consumer demand for fresh fruits and vegetables increases every year, and farmers need a low cost novel method to reduce post-harvest loss and preserve the quality of fresh fruits and vegetables. This study identifies a method to induce soil bacteria to biosynthesize a nitrile compound that potentially enters the plants tissue and negatively affects climacteric ripening and delays the ripening process at 20-30˚C. This study used soil rich with soil microbes, to delay the ripening of climacteric fruit. The soil was treated with nitrogen, a heavy metal, and ethylene gas. Ethylene induced the soil to delay the ripening of organic bananas and peaches. A prototype transportation container maintained fruit fresh for up to 72 h at 20-30˚C. The fruit retained color, firmness, texture, no bruising and minimal spotting. The soil also prevented fungal infection in all samples. GC-MS analysis suggests ethylene induced the soil microbes to release an acetonitrile compound into the gaseous environment. The nitrile is released in low concentrations, but mature plants (fruits) contain very low levels of indole-3-acetonitrile (IAN) or indole-3-acetic acid (IAA). The nitrile may obstruct or modify the mature plants (fruit) late stages development process, thus delay the climacteric ripening process and retarding the physiological and phenotypic effects of fruit ripening. We believe this study may have strong applications for post-harvest biotechnology.


Author(s):  
David Bogataj ◽  
Damjana Drobne

Nanotechnology can contribute to food security in supply chains of agri production-consumption systems. The unique properties of nanoparticles have stimulated the increasing interest in their application as biosensing. Biosensing devices are designed for the biological recognition of events and signal transduction. Many types of nanoparticles can be used as biosensors, but gold nanoparticles have sparked most interest. In the work presented here, we will address the problem of fruit and vegetable decay and rotting during transportation and storage, which could be easily generalized also onto post-harvest loss prevention in general. During the process of rotting, different compounds, including different gasses, are released into the environment. The application of sensitive bionanosensors in the storage/transport containers can detect any changes due to fruit and vegetable decay and transduce the signal. The goal of this is to reduce the logistics cost for this items. Therefore, our approach requires a multidisciplinary and an interdisciplinary approach in science and technology. The cold supply chain is namely a science, a technology and a process which combines applied bio-nanotechnology, innovations in the industrial engineering of cooling processes including sensors for temperature and humidity measurements, transportation, and applied mathematics. It is a science, since it requires the understanding of chemical and biological processes linked to perishability and the systems theory which enables the developing of a theoretical framework for the control of systems with perturbed time-lags. Secondly, it is a technology developed in engineering which relies on the physical means to assure appropriate temperature conditions along the CSC and, thirdly, it is also a process, since a series of tasks must be performed to prepare, store, and transport the cargo as well as monitor the temperature and humidity of sensitive cargo and give proper feedback control, as it will be outlined in this chapter. Therefore, we shall discuss how to break the silos of separated knowledge to build an interdisciplinary and multidisciplinary science of post-harvest loss prevention. Considering the sensors as floating activity cells, modelled as floating nodes, in a graph of such a system, an extended Material Requirement Planning (MRP) theory will be described which will make it possible to determine the optimal feedback control in post-harvest loss prevention, based on bionanosensors. Therefore, we present also a model how to use nanotechnology from the packaging facility to the final retail. Any changes in time, distance, humidity or temperature in the chain could cause the Net Present Value (NPV) of the activities and their added value in the supply chain to be perturbed, as presented in the subchapter. In this chapter we give the answers to the questions, how to measure the effects of some perturbations in a supply chain on the stability of perishable agricultural goods in such systems and how nanotechnology can contribute with the appropriate packaging and control which preserves the required level of quality and quantity of the product at the final delivery. The presented model will not include multicriteria optimization but will stay at the NPV approach. But the annuity stream achieved by improved sensing and feedback control could be easily combined with environmental and medical/health criteria. An interdisciplinary perspective of industrial engineering and management demonstrates how the development of creative ideas born in separate research fields can be liaised into an innovative design of smart control devices and their installation in trucks and warehouses. These innovative technologies could contribute to an increase in the NPV of activities in the supply chains of perishable goods in general.


2013 ◽  
Vol 27 ◽  
pp. 42-47 ◽  
Author(s):  
Md Nurul Amin ◽  
Md Mosharraf Hossain

For reducing the post-harvest loss and extension of shelf-life of banana, it is treated with fungicide or combination of fungicide and hot-water treatment. A study was conducted for developing a method to control post-harvest diseases and extension of shelf-life of banana through non-chemical method of hot water treatment. The best treatment combination was found at 53 °C for 9 minutes. Shelf-lives of BARI Kola 1 and Sabri Kola treated with hot water increased by 26 and 27.5%, respectively against untreated fruits. Post-harvest loss (decay and crown rot) of these varieties was reduced, respectively by 95% and 70% against untreated fruits. Firmness of treated fruits for both varieties was found higher than that of untreated fruits during ripening. Total soluble solid, total sugar, acidity and ?-carotene of treated fruits of these varieties increased over untreated fruits. The pH and vitamin C of treated bananas decreased over untreated fruits during ripening. DOI: http://dx.doi.org/10.3329/jce.v27i1.15857 Journal of Chemical Engineering, IEB Vol. ChE. 27, No. 1, June 2012: 42-47


2019 ◽  
Vol 11 (2) ◽  
pp. 33-42 ◽  
Author(s):  
Gebretsadik Desale ◽  
Haji Jema ◽  
Tegegne Bosena

2019 ◽  
Vol 6 (1) ◽  
pp. 41-54
Author(s):  
Md. Belal Hossain Sikder ◽  
M Muksitu Islam

Banana is highly perishable fruit and shelf life is short, which leads resulting post-harvest loss consistently in Bangladesh. To lessen the post-harvest loss and draw out the time span of the usability of banana, green mature bananas were treated with 0.5%, 0.75%, and 1% chitosan, individually. For the subsequent treatments, bananas were stored at room temperature. The viability of the coating in extending fruit’s shelf-life was assessed by evaluated total weight loss, ash content, total soluble solids (TSS), pH, titratable acidity (TA), disease severity and shelf life during the storage period. Chitosan coating reduced respiration activity, thus delaying ripening and the rate of decay due to senescence. The chitosan-coated banana samples had a better outcome on weight loss, ash content, pH, TSS, TA and disease severity values as compared to control samples. Banana coated with 1% chitosan showed less weight reduction and lessened obscuring than different treatments and control. Disease severity was astoundingly lessened by chitosan covering application. Chitosan coating extended banana up to the shelf life of more 2 to 4 days. From this investigation, it demonstrated that 1% chitosan was more appropriate in extending the shelf-life and better quality of banana during ripening and storage at ambient temperature.


Sign in / Sign up

Export Citation Format

Share Document