scholarly journals Study of Cytochrome P450 2E1 and its allele Variants in Liver Injury of Nondiabetic, Nonalcoholic Steatohepatitis Obese Women

2008 ◽  
Vol 41 (1) ◽  
Author(s):  
NELSON M VARELA ◽  
LUIS A QUIÑONES ◽  
MYRIAM ORELLANA ◽  
JAIME PONIACHIK ◽  
ATTILA CSENDES ◽  
...  
Hepatology ◽  
1998 ◽  
Vol 27 (1) ◽  
pp. 128-133 ◽  
Author(s):  
Martin D. Weltman ◽  
Geoffrey C. Farrell ◽  
Pauline Hall ◽  
Magnus Ingelman-Sundberg ◽  
Christopher Liddle

Biomedicines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 50 ◽  
Author(s):  
Yanchao Jiang ◽  
Ting Zhang ◽  
Praveen Kusumanchi ◽  
Sen Han ◽  
Zhihong Yang ◽  
...  

Once ingested, most of the alcohol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde. Two additional pathways of acetaldehyde generation are by microsomal ethanol oxidizing system (cytochrome P450 2E1) and catalase. Acetaldehyde can form adducts which can interfere with cellular function, leading to alcohol-induced liver injury. The variants of alcohol metabolizing genes encode enzymes with varied kinetic properties and result in the different rate of alcohol elimination and acetaldehyde generation. Allelic variants of these genes with higher enzymatic activity are believed to be able to modify susceptibility to alcohol-induced liver injury; however, the human studies on the association of these variants and alcohol-associated liver disease are inconclusive. In addition to acetaldehyde, the shift in the redox state during alcohol elimination may also link to other pathways resulting in activation of downstream signaling leading to liver injury.


1994 ◽  
Vol 18 (5) ◽  
pp. 1280-1285 ◽  
Author(s):  
Arnin A. Nanji ◽  
Shuping Zhao ◽  
S. M. Hossein Sadrzadeh ◽  
Andrew J. Dannenberg ◽  
Steven R. Tahan ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1760
Author(s):  
Ga-Ram Yu ◽  
Seung-Jun Lee ◽  
Dong-Woo Lim ◽  
Hyuck Kim ◽  
Jai-Eun Kim ◽  
...  

Sochehwan (SCH) is an herbal prescription from traditional oriental medicine and is currently used to treat digestive ailments. In a previous study, SCH was found to have the potential to attenuate metabolic syndrome (MetS) by activating AMPK and downstream signaling. From the view of drug repurposing, the efficacy of SCH on alcoholic liver injury is implied in classic medical texts but is yet to be proven. C57BL/6J mice were pre-treated with SCH orally for 5 days and challenged by providing a pair-fed Lieber DeCarli diet containing alcohol for 20 days. Hepatic enzyme and triglyceride levels and endoplasmic reticulum (ER) stress-related markers were analyzed. Moreover, mitogen-activated protein kinases (MAPKs) and cytochrome P450 2E1 (CYP2E1) levels were determined. CYP2E1-transfected HepG2 cells were used to test the cytoprotective efficacy of SCH against the adverse effects of alcohol in vitro. In mice, SCH administration notably reduced hepatic enzyme activity and neural lipid levels. Furthermore, ER-stress markers and MAPK phosphorylation were reduced due to ROS suppression, which was attributed to decreased CYP2E1 expression in liver tissue. In addition, SCH successfully protected CYP2E1-transfected HepG2 cells against ethanol. Our findings suggest SCH attenuated alcohol-induced liver injury by inhibiting CYP2E1 expression and indicate drug repurposing should be considered as a valuable option for drug development in traditional herbal medicines.


2015 ◽  
Vol 128 (10) ◽  
pp. 695-706 ◽  
Author(s):  
Dong Hun Lee ◽  
Dae Hwan Kim ◽  
Chul Ju Hwang ◽  
Sukgil Song ◽  
Sang Bae Han ◽  
...  

Alcohol abuse and alcoholism lead to alcoholic liver disease (ALD), which is a major type of chronic liver disease worldwide. Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. However, the role of IL-32 in chronic liver disease has not been reported. In the present paper, we tested the effect of IL-32γ on ethanol-induced liver injury in IL-32γ-overexpressing transgenic mice (IL-32γ mice) after chronic ethanol feeding. Male C57BL/6 and IL-32γ mice (10–12 weeks old) were fed on a Lieber–DeCarli diet containing 6.6% ethanol for 6 weeks. IL-32γ-transfected HepG2 and Huh7 cells, as well as primary hepatocytes from IL-32γ mice, were treated with or without ethanol. The hepatic steatosis and damage induced by ethanol administration were attenuated in IL-32γ mice. Ethanol-induced cytochrome P450 2E1 expression and hydrogen peroxide levels were decreased in the livers of IL-32γ mice, primary hepatocytes from IL-32γ mice and IL-32γ-overexpressing human hepatic cells. The ethanol-induced expression levels of cyclo-oxygenase-2 (COX-2) and IL-6 were reduced in the livers of IL-32γ mice. Because nuclear transcription factor κB (NF-κB) is a key redox transcription factor of inflammatory responses, we examined NF-κB activity. Ethanol-induced NF-κB activities were significantly lower in the livers of IL-32γ mice than in wild-type (WT) mice. Furthermore, reduced infiltration of natural killer cells, cytotoxic T-cells and macrophages in the liver after ethanol administration was observed in IL-32γ mice. These data suggest that IL-32γ prevents ethanol-induced hepatic injury via the inhibition of oxidative damage and inflammatory responses.


2011 ◽  
Vol 27 (4) ◽  
pp. 285-310 ◽  
Author(s):  
Aparajita Dey ◽  
S. Mathan Kumar

Sign in / Sign up

Export Citation Format

Share Document