Hydrophobic sealing materials for harsh environmental electrical connector package applications

2019 ◽  
Vol 2019 (1) ◽  
pp. 000078-000084
Author(s):  
Hua Xia ◽  
Nelson Settles ◽  
David DeWire

Abstract A highly hydrophobic sealing material system has been developed using high-temperature melt-quenching and sintering technologies for harsh environmental electrical connector package sealing applications. The sealing material properties can be varied by its phase structures, such as amorphous glass, crystalline monoclinic and tetragonal mixed phase, and covalent bond tetragonal phase, which are determined by a two-stage synthesizing process. The dilatometer measurements have found that the ambient coefficient of thermal expansion varies from ~5.8 to 7.1 ppm/°C while the coefficient of thermal expansion at its glass transition temperatures varies from ~7.0 to 9.0 ppm/°C. These coefficients of thermal expansion could provide not only wide options for integrating metal materials, such as Ti-alloy, Kovar, Inconel alloys, and Stainless Steels for making reliable electrical connector packages, but also enable the design of electrical connector packages with a safety factor of 3 performance, operable at 30KSI (30,000 PSI) pressure, and −100 −300°C harsh conditions while maintaining at least 5,000MΩ insulation resistances, for reliable signal, data, and electrical power transmissions.

2019 ◽  
Vol 16 (3) ◽  
pp. 141-148
Author(s):  
Hua Xia ◽  
Nelson Settles ◽  
David DeWire

Abstract A bismuth oxide–based multicomponent glass system, xH3BO3-yBi2O3-(1-x-y-δ)MO-δ· rare earth oxides (REOs) with MO = TiO2, BaO, ZnO, Fe2O3, etc., and lanthanum series–based REOs, for making downhole high-pressure and high-temperature electrical feedthrough package has been developed using high-temperature melt-quenching and sintering technologies. By properly controlling phase structures in material-manufacturing processes, the obtained sealing materials have shown moisture-resistant properties in their monoclinic and tetragonal mixed phase structures but strongly hydrophobic properties in their covalent bond tetragonal phase. Sealed electrical feedthrough packages have been evaluated under boiling water immersion and 200°C/30,000 PSI water-fluid–simulated downhole harsh environments. The post electrical insulation measurement has demonstrated to be greater than 1.0 × 1014 Ω electrical resistance. This article will show that such a high–bonding strength and high–insulation strength sealing material could be used to seal electrical feed-throughs and connectors for 300°C/30,000 PSI downhole and subsea wireline, logging while drilling, and measurement while drilling tools' signal, data, and electrical power transmissions.


2020 ◽  
Vol 54 (25) ◽  
pp. 3777-3799
Author(s):  
Loredana Kehrer ◽  
Jeffrey T Wood ◽  
Thomas Böhlke

Fiber-reinforced polymers contribute significantly to weight-reducing components for various industrial applications. A discontinuous glass fiber-reinforced thermoset resin is considered which is produced by the sheet molding compound (SMC) process. Related to the production process, the samples considered in this work exhibit an anisotropic fiber orientation distribution which highly affects the thermomechanical properties. The thermoviscoelastic material behavior of three selected samples is characterized by means of dynamic mechanical analysis. These tests show the temperature-dependent elastic modulus and the glass transition of the composite. Measurements of the thermal expansion of the SMC composite provide data on the coefficient of thermal expansion (CTE). These experimental investigations provide data for the thermoelastic material modeling. Aiming at the prediction of the effective thermal and mechanical properties, a Hashin–Shtrikman-based homogenization method is presented. Based on an eigenstrain formulation, the effective Young’s modulus and CTE are computed in two steps. Moreover, the mean-field method is given in dependence of a variable reference stiffness allowing to tailor the approach to the material system. The influence of this variable reference stiffness on the effective quantities as well as the predicted behavior is analyzed with respect to the experiments. The presented numerical results are in good agreement with the experimental data.


2019 ◽  
Vol 2019 (HiTen) ◽  
pp. 000022-000027
Author(s):  
Hua Xia ◽  
Nelson Settles ◽  
David DeWire

Abstract A bismuth oxide based multi-component glass system, xH3BO3-yBi2O3-(1-x-y-δ)MO-δ·REO with MO=TiO2, BaO, ZnO, Fe2O3, etc., and lanthanum series based rare earth oxides (REO), for making downhole high-pressure and high-temperature (HPHT) electrical feedthrough package, has been developed using high-temperature melt-quenching and sintering technologies. By properly controlling phase structures in the material manufacturing processes, the obtained sealing materials have shown moisture-resistant properties in their monoclinic and tetragonal mixed phase structures, but strongly hydrophobic properties in their covalent bond tetragonal phase. The sealed electrical feedthrough packages have been evaluated under boiling water immersion and 200°C/30,000PSI water-fluid simulated downhole harsh environments. The post measurement has demonstrated to be greater than 1.0×1014 Ω electrical resistance. This paper will show that such a high-bonding-strength and high-insulation-strength sealing material could be used to seal electrical feedthroughs and connectors for 300°C/30,000PSI downhole and subsea wireline, logging while drilling (LWD), and measurement while drilling (MWD) tools' signal, data, and electrical power transmissions.


Author(s):  
Li Sun ◽  
Sam Baldauf ◽  
Patrick Kwon

A powder mixture of ZrO2+WO3 and ZrO2 powder were stacked, co-compacted and co-sintered in the processing steps commonly used to fabricate multi-layer materials. However, the observation of the cross-sectional microstructures as well as the measurement of the radial thermal expansion provided the evidence that the sintered samples are continuous Functionally Graded Materials (FGMs) made of ZrW2O8 and ZrO2, Because of the discrepancy in the sintering potentials between two materials, the sintered samples do not retain the original cylindrical shapes of the green compacts. This problem has been resolved by choosing the appropriate powder mixture for each layer of the compacts. The formation of the continuous FGM structure is due to three factors: 1) the diffusion of WO3, 2) the sublimation of WO3 and 3) the reaction between ZrO2 and WO3. The continuous variation in the radial coefficient of thermal expansion can be utilized to reduce the thermal stress induced from a thermal gradient loading within a material system. This study shows that the processing steps typically used in processing stepwise FGMs can also be used to create continuous FGMs for some special powder mixtures.


Author(s):  
Zhaonan Li ◽  
Jiajun Yang ◽  
Dong Yan ◽  
Ping Feng ◽  
Jian Pu

Sealant is used in a solid oxide fuel cell (SOFC) stack to separate fuel and oxygen from burning with each other throughout the stack's lifetime cycle. Various sealing materials have been developed and the glass sealant shows quite a potential for its low leaking rate. However, glass sealants usually suffer from fractures during thermal cycle because of their low-temperature brittleness and mismatched coefficient of thermal expansion. Recently, we have developed a novel glass-based sealant consisting of BaO–CaO–SiO2–CoO and a small amount of Al2O3 powder which is used to adjust the coefficient of thermal expansion (CTE) and reinforce its mechanical performance. The sealant exhibited a good performance with the leaking rates less than 0.04 sccm cm−1 under compressive load of 0.17 MPa at 750 °C and showed stable leak rates over several thermal cycles. The well bonded interfaces and chemical compatibility have been identified by microstructure analysis of the seals. The sealant also demonstrated its applicability in a one-cell stack test.


Alloy Digest ◽  
1987 ◽  
Vol 36 (8) ◽  

Abstract NILO alloy 36 is a binary iron-nickel alloy having a very low and essentially constant coefficient of thermal expansion at atmospheric temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Fe-79. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1971 ◽  
Vol 20 (1) ◽  

Abstract UNISPAN LR35 offers the lowest coefficient of thermal expansion of any alloy now available. It is a low residual modification of UNISPAN 36 for fully achieving the demanding operational level of precision equipment. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: Fe-46. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1998 ◽  
Vol 47 (4) ◽  

Abstract Deltalloy 4032 has good machinability and drilling characteristics when using single-point or multispindle screw machines and an excellent surface finish using polycrystalline or carbide tooling. The alloy demonstrates superior wear resistance and may eliminate the need for hard coat anodizing. Deltalloy 4032 is characterized by high strength and a low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion and wear resistance as well as machining and surface treatment. Filing Code: AL-347. Producer or source: ALCOA Wire, Rod & Bar Division.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract RED X-20 is a heat treatable hypereutectic aluminum-silicon alloy with excellent wear resistance and a very low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-89. Producer or source: Apex Smelting Company.


Sign in / Sign up

Export Citation Format

Share Document