scholarly journals Muscle function impairment in cancer patients in pre-cachexia stage

Author(s):  
Stefania Dalise ◽  
Peppino Tropea ◽  
Luca Galli ◽  
Andrea Sbrana ◽  
Carmelo Chisari

Cancer cachexia has been reported to be directly responsible for at least 20% of cancer deaths. Management of muscle wasting in cancer-associated cachexia appears to be of pivotal importance for survival of patients. In this regard, it would be interesting to identify before its patent appearance eventual functional markers of muscle damage, to plan specific exercise protocols to counteract cachexia. The muscle function of 13 oncologic patients and 15 controls was analyzed through: i) analysis of the oxidative metabolism, indirectly evaluated trough dosage of blood lactate levels before and after a submaximal incremental exercise on a treadmill; ii) analysis of strength and, iii) endurance, in both lower and upper limbs muscles, employing an isokinetic dynamometer. Statistical analyses were carried out to compare the muscle activities between groups. Analysis of oxidative metabolism during the incremental exercise on a treadmill showed that patients performed a shorter exercise than controls. Lactate levels were significantly higher in patients both at baseline and after the task. Muscle strength analysis in patients group showed a reduction of Maximum Voluntary Contraction during the isometric contraction and, a tendency to fatigue during endurance task. Data emerging from this study highlight an impairment of muscle oxidative metabolism in subjects affected by a pre-cachexia stage of cancer. A trend of precocious fatigability and an impairment of muscle strength production were also observed. This evidence underlines the relevance of assessing muscle function in order to develop novel rehabilitative approaches able to counteract motor impairment and eventually to prevent cachexia in these patients.

2020 ◽  
Vol 30 (2) ◽  
pp. 258-267 ◽  
Author(s):  
Stefania Dalise ◽  
Peppino Tropea ◽  
Luca Galli ◽  
Andrea Sbrana ◽  
Carmelo Chisari

Cancer cachexia has been reported to be directly responsible for at least 20% of cancer deaths. Management of muscle wasting in cancer-associated cachexia appears to be of pivotal importance for survival of patients. In this regard, it would be interesting to identify before its patent appearance eventual functional markers of muscle damage, to plan specific exercise protocols to counteract cachexia. The muscle function of 13 oncologic patients and 15 controls was analyzed through: i) analysis of the oxidative metabolism, indirectly evaluated trough dosage of blood lactate levels before and after a submaximal incremental exercise on a treadmill; ii) analysis of strength and, iii) endurance, in both lower and upper limbs muscles, employing an isokinetic dynamometer. Statistical analyses were carried out to compare the muscle activities between groups. Analysis of oxidative metabolism during the incremental exercise on a treadmill showed that patients performed a shorter exercise than controls. Lactate levels were significantly higher in patients both at baseline and after the task. Muscle strength analysis in patients group showed a reduction of Maximum Voluntary Contraction during the isometric contraction and, a tendency to fatigue during endurance task. Data emerging from this study highlight an impairment of muscle oxidative metabolism in subjects affected by a pre-cachexia stage of cancer. A trend of precocious fatigability and an impairment of muscle strength production were also observed. This evidence underlines the relevance of assessing muscle function in order to develop novel rehabilitative approaches able to counteract motor impairment and eventually to prevent cachexia in these patients.


2014 ◽  
Vol 17 (04) ◽  
pp. 1450015
Author(s):  
Yoichi Ohta ◽  
Kengo Yotani

Purpose: The present study aimed to clarify inter-individual correlation between the magnitudes of force summation and the post-activation potentiation (PAP), in human ankle plantar- and dorsi-flexor muscles. Methods: We analyzed 10 male participants plantar-flexor muscles and the 12 male participants dorsi-flexor muscles using a database from a previous study. Before and after maximum voluntary contraction, we measured the amount of isometric torque evoked by a single, double- and triple-pulse train stimulus. Results: The magnitude of PAP was significantly positively correlated with the magnitude of force summation in both the plantar- and dorsi-flexor muscles. Conclusions: The present study confirmed the correlation between the magnitudes of force summation and PAP in human ankle plantar- and dorsi-flexor muscles. This suggests that muscle characteristics affecting the force summation capacity depend on the PAP, to some degree. These results suggest that the combination of both parameters might enhance the usefulness of evaluating changes in muscle function using intrinsic contractile properties.


2009 ◽  
Vol 107 (4) ◽  
pp. 1235-1240 ◽  
Author(s):  
Sean Walsh ◽  
Bethany K. Kelsey ◽  
Theodore J. Angelopoulos ◽  
Priscilla M. Clarkson ◽  
Paul M. Gordon ◽  
...  

The present study examined associations between the ciliary neurotrophic factor (CNTF) 1357 G → A polymorphism and the muscle strength response to a unilateral, upper arm resistance-training (RT) program among healthy, young adults. Subjects were 754 Caucasian men (40%) and women (60%) who were genotyped and performed a training program of the nondominant (trained) arm with the dominant (untrained) arm as a comparison. Peak elbow flexor strength was measured with one repetition maximum, isometric strength with maximum voluntary contraction, and bicep cross-sectional area with MRI in the trained and untrained arms before and after training. Women with the CNTF GG genotype gained more absolute isometric strength, as measured by MVC (6.5 ± 0.3 vs. 5.2 ± 0.5 kg), than carriers of the CNTF A1357 allele in the trained arm pre- to posttraining ( P < 0.05). No significant associations were seen in men. Women with the CNTF GG genotype gained more absolute dynamic (1.0 ± 0.1 vs. 0.6 ± 0.1 kg) and allometric (0.022 ± 0.0 vs. 0.015 ± 0.0 kg/kg−0.67) strength, as measured by 1 RM, than carriers of the CNTF A1357 allele in the untrained arm pre- to posttraining ( P < 0.05). No significant associations were seen in men. No significant associations, as measured by cross-sectional area, were seen in men or women. The CNTF 1357 G → A polymorphism explains only a small portion of the variability in the muscle strength response to training in women.


2007 ◽  
Vol 103 (6) ◽  
pp. 1950-1957 ◽  
Author(s):  
Joaquin U. Gonzales ◽  
Benjamin C. Thompson ◽  
John R. Thistlethwaite ◽  
Allison J. Harper ◽  
Barry W. Scheuermann

To test the hypothesis that sex influences forearm blood flow (FBF) during exercise, 15 women and 16 men of similar age [women 24.3 ± 4.0 (SD) vs. men 24.9 ± 4.5 yr] but different forearm muscle strength (women 290.7 ± 44.4 vs. men 509.6 ± 97.8 N; P < 0.05) performed dynamic handgrip exercise as the same absolute workload was increased in a ramp function (0.25 W/min). Task failure was defined as the inability to maintain contraction rate. Blood pressure and FBF were measured on separate arms during exercise by auscultation and Doppler ultrasound, respectively. Muscle strength was positively correlated with endurance time ( r = 0.72, P < 0.01) such that women had a shorter time to task failure than men (450.5 ± 113.0 vs. 831.3 ± 272.9 s; P < 0.05). However, the percentage of maximal handgrip strength achieved at task failure was similar between sexes (14% maximum voluntary contraction). FBF was similar between women and men throughout exercise and at task failure (women 13.6 ± 5.3 vs. men 14.5 ± 4.9 ml·min−1·100 ml−1). Mean arterial pressure was lower in women at rest and during exercise; thus calculated forearm vascular conductance (FVC) was higher in women during exercise but similar between sexes at task failure (women 0.13 ± 0.05 vs. men 0.11 ± 0.04 ml·min−1·100 ml−1·mmHg−1). In conclusion, the similar FBF during exercise was achieved by a higher FVC in the presence of a lower MAP in women than men. Still, FBF remained coupled to work rate (and presumably metabolic demand) during exercise irrespective of sex.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Linda S. Pescatello ◽  
Joseph M. Devaney ◽  
Monica J. Hubal ◽  
Paul D. Thompson ◽  
Eric P. Hoffman

The purpose of theFunctional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strengthstudy or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT). The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years), healthy men (42%) and women (58%) that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity.


2020 ◽  
Vol 11 (1) ◽  
pp. 193-200
Author(s):  
Elizabeth Saunders ◽  
Brian C. Clark ◽  
Leatha A. Clark ◽  
Dustin R. Grooms

AbstractThe purpose of this study was to quantify head motion between isometric erector spinae (ES) contraction strategies, paradigms, and intensities in the development of a neuroimaging protocol for the study of neural activity associated with trunk motor control in individuals with low back pain. Ten healthy participants completed two contraction strategies; (1) a supine upper spine (US) press and (2) a supine lower extremity (LE) press. Each contraction strategy was performed at electromyographic (EMG) contraction intensities of 30, 40, 50, and 60% of an individually determined maximum voluntary contraction (MVC) (±10% range for each respective intensity) with real-time, EMG biofeedback. A cyclic contraction paradigm was performed at 30% of MVC with US and LE contraction strategies. Inertial measurement units (IMUs) quantified head motion to determine the viability of each paradigm for neuroimaging. US vs LE hold contractions induced no differences in head motion. Hold contractions elicited significantly less head motion relative to cyclic contractions. Contraction intensity increased head motion in a linear fashion with 30% MVC having the least head motion and 60% the highest. The LE hold contraction strategy, below 50% MVC, was found to be the most viable trunk motor control neuroimaging paradigm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Homer-Bouthiette ◽  
L. Xiao ◽  
Marja M. Hurley

AbstractFibroblast growth factor 2 (FGF2) is important in musculoskeletal homeostasis, therefore the impact of reduction or Fgf2 knockout on skeletal muscle function and phenotype was determined. Gait analysis as well as muscle strength testing in young and old WT and Fgf2KO demonstrated age-related gait disturbances and reduction in muscle strength that were exacerbated in the KO condition. Fgf2 mRNA and protein were significantly decreased in skeletal muscle of old WT compared with young WT. Muscle fiber cross-sectional area was significantly reduced with increased fibrosis and inflammatory infiltrates in old WT and Fgf2KO vs. young WT. Inflammatory cells were further significantly increased in old Fgf2KO compared with old WT. Lipid-related genes and intramuscular fat was increased in old WT and old Fgf2KO with a further increase in fibro-adipocytes in old Fgf2KO compared with old WT. Impaired FGF signaling including Increased β-Klotho, Fgf21 mRNA, FGF21 protein, phosphorylated FGF receptors 1 and 3, was observed in old WT and old Fgf2KO. MAPK/ ERK1/2 was significantly increased in young and old Fgf2KO. We conclude that Fgf2KO, age-related decreased FGF2 in WT mice, and increased FGF21 in the setting of impaired Fgf2 expression likely contribute to impaired skeletal muscle function and sarcopenia in mice.


2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Lucien Robinault ◽  
Aleš Holobar ◽  
Sylvain Crémoux ◽  
Usman Rashid ◽  
Imran Khan Niazi ◽  
...  

Over recent years, a growing body of research has highlighted the neural plastic effects of spinal manipulation on the central nervous system. Recently, it has been shown that spinal manipulation improved outcomes, such as maximum voluntary force and limb joint position sense, reflecting improved sensorimotor integration and processing. This study aimed to further evaluate how spinal manipulation can alter neuromuscular activity. High density electromyography (HD sEMG) signals from the tibialis anterior were recorded and decomposed in order to study motor unit changes in 14 subjects following spinal manipulation or a passive movement control session in a crossover study design. Participants were asked to produce ankle dorsiflexion at two force levels, 5% and 10% of maximum voluntary contraction (MVC), following two different patterns of force production (“ramp” and “ramp and maintain”). A significant decrease in the conduction velocity (p = 0.01) was observed during the “ramp and maintain” condition at 5% MVC after spinal manipulation. A decrease in conduction velocity suggests that spinal manipulation alters motor unit recruitment patterns with an increased recruitment of lower threshold, lower twitch torque motor units.


Author(s):  
Amrish O. Chourasia ◽  
Mary E. Sesto ◽  
Youngkyoo Jung ◽  
Robert S. Howery ◽  
Robert G. Radwin

Work place exertions may include muscle shortening (concentric) or muscle lengthening (eccentric) contractions. This study investigates the upper limb mechanical properties and magnetic resonance images (MRI) of the involved muscles following submaximal eccentric and concentric exertions. Twelve participants were randomly assigned to perform at 30° per second eccentric or concentric forearm supination exertions at 50% isometric maximum voluntary contraction (MVC) for 30 minutes. Measurement of mechanical stiffness, isometric MVC, localized discomfort and MRI supinator: extensor signal intensity ratio was done before, immediately after, 1 hour after and 24 hours after the bout of exercise. A 53% average decrease in mechanical stiffness after 1 hour was observed for the eccentric group (p< 0.05) compared to a 1% average decrease for the concentric group (p> 0.05). Edema, indicative of swelling, was observed 24 hrs after exercise, with an average increase in the MRI supinator: extensor signal intensity ratio of 36% for the eccentric group and less than 10% for the concentric group (p<0.05).


Sign in / Sign up

Export Citation Format

Share Document