scholarly journals Two years of Functional Electrical Stimulation by large surface electrodes for denervated muscles improve skin epidermis in SCI

Author(s):  
Giovanna Albertin ◽  
Helmut Kern ◽  
Christian Hofer ◽  
Diego Guidolin ◽  
Andrea Porzionato ◽  
...  

Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) patients suffering with complete conus and cauda equina lesions, and thus with permanent denervation-induced atrophy and degeneration of muscle fibers, were almost completely rescued to normal size after two years of home-based Functional Electrical Stimulation (h-bFES). Since we used large surface electrodes to stimulate the thigh muscles, we wanted to know if the skin was affected by long-term treatment. Here we report preliminary data of morphometry of skin biopsies harvested from legs of 3 SCI patients before and after two years of h-bFES to determine the total area of epidermis in transverse skin sections. By this approach we support our recently published results obtained randomly measuring skin thickness in the same biopsies after H-E stain. The skin biopsies data of three subjects, taken together, present indeed a statistically significant 30% increase in the area of the epidermis after two years of h-bFES. In conclusion, we confirm a long term positive modulation of electrostimulated epidermis, that correlates with the impressive improvements of the FES-induced muscle strength and bulk, and of the size of the muscle fibers after 2-years of h-bFES.

Author(s):  
Barbara Ravara ◽  
Christian Hofer ◽  
Helmut Kern ◽  
Diego Guidolin ◽  
Andrea Porzionato ◽  
...  

Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) persons suffering with complete conus and cauda equina syndrome, and thus with permanent denervation-induced atrophy and degeneration of muscle, were almost completely rescued to normal size after two years of home based Functional Electrical Stimulation (hbFES). Since large surface electrodes were used to stimulate the denervated thigh muscles, we wanted to know if the skin was affected by this peculiar long-term treatment. Indeed, we demonstrated by two approaches that the epidermis decreases in thickness in the long term denervated persons, while it increased to almost pre-SCI values in hbFES compliant SCI persons. Here we report data of morphometry of skin biopsies from both legs of 18 SCI persons, harvested at enrolment in the Project RISE, to test if the Interdigitation Index, a simple measurement of the epidermal‐dermal junction, may provide a further precise quantitative evidence of the flattening of the skin in those SCI persons. The Interdigitation Index of the 36 skin biopsies shows a higly significant linear correlation with the years of SCI (p < 0.001). Furthermore, when the 18 SCI persons are divided in two groups (1 to 3.9 versus 4.1 to 8.0 years from SCI, respectively) and the data are compared, the later Group presents a statistically significant -22% decrease (p, 0.029) of the Interdigitation Index. On the other hand counting the papille do not provide the same strong evidence. In conclusion, the Interdigitation Index is an additional sound quantitative structural biomarker of skin atrophy and flattening occurring in SCI. The result correlates with the much severe extent of atrophy of the permanently denervated thigh muscles, as determined at both macro and microscopic levels.We are confident that the Interdigitation Index will provide sound evidence that the effects of hbFES, we previously reported on skeletal muscle and epidermis thickness, will be extended to the dermal layer of the skin, suggesting a coordinated negative effects of SCI on skeletal muscle and skin, and an improvement of both tissues after hbFES. Incoming analyses will be extended to basal lamina, collagene types, elastic fibers and skin annexes in the subcutaneous layer.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 529 ◽  
Author(s):  
Helmut Kern ◽  
Ugo Carraro

Spinal cord injury (SCI) produces muscle wasting that is especially severe after complete and permanent damage of lower motor neurons, as can occur in complete conus and cauda equina syndrome. Even in this worst-case scenario, mass and function of permanently denervated quadriceps muscle can be rescued by surface functional electrical stimulation using a purpose designed home-based rehabilitation strategy. Early diagnostics is a key factor in the long-term success of this management. Function of quadriceps muscle was quantitated by force measurements. Muscle gross cross-sections were evaluated by quantitative color computed tomography (CT) and muscle and skin biopsies by quantitative histology, electron microscopy, and immunohistochemistry. Two years of treatment that started earlier than 5 years from SCI produced: (a) an increase in cross-sectional area of stimulated muscles; (b) an increase in muscle fiber mean diameter; (c) improvements in ultrastructural organization; and (d) increased force output during electrical stimulation. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that new trials start soon, providing patients the benefits they need.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ann Tokay Harrington ◽  
Calum G. A. McRae ◽  
Samuel C. K. Lee

Introduction. Adolescents with cerebral palsy (CP) often have difficulty participating in exercise at intensities necessary to improve cardiovascular fitness. Functional electrical stimulation- (FES-) assisted cycling is proposed as a form of exercise for adolescents with CP. The aims of this paper were to adapt methods and assess the feasibility of applying FES cycling technology in adolescents with CP, determine methods of performing cycling tests in adolescents with CP, and evaluate the immediate effects of FES assistance on cycling performance.Materials/Methods. Four participants (12–14 years old; GMFCS levels III-IV) participated in a case-based pilot study of FES-assisted cycling in which bilateral quadriceps muscles were activated using surface electrodes. Cycling cadence, power output, and heart rate were collected.Results. FES-assisted cycling was well tolerated (n=4) and cases are presented demonstrating increased cadence (2–43 rpm), power output (19–70%), and heart rates (4-5%) and decreased variability (8–13%) in cycling performance when FES was applied, compared to volitional cycling without FES assistance. Some participants (n=2) required the use of an auxiliary hub motor for assistance.Conclusions. FES-assisted cycling is feasible for individuals with CP and may lead toimmediateimprovements in cycling performance. Future work will examine the potential for long-term fitness gains using this intervention.


2015 ◽  
Vol 25 (4) ◽  
pp. 221 ◽  
Author(s):  
Ugo Carraro ◽  
Helmut Kern ◽  
Paolo Gava ◽  
Christian Hofer ◽  
Stefan Loefler ◽  
...  

There is something in our genome that dictates life expectancy and there is nothing that can be done to avoid this; indeed, there is not yet any record of a person who has cheated death. Our physical prowess can vacillate substantially in our lifetime according to our activity levels and nutritional status and we may fight aging, but we will inevitably lose. We have presented strong evidence that the atrophy which accompanies aging is to some extent caused by loss of innervation. We compared muscle biopsies of sedentary seniors to those of life long active seniors, and show that these groups indeed have a different distribution of muscle fiber diameter and fiber type. The senior sportsmen have many more slow fiber-type groupings than the sedentary people which provides strong evidence of denervation-reinnervation events in muscle fibers. It appears that activity maintains the motoneurons and the muscle fibers. Premature or accelerated aging of muscle may occur as the result of many chronic diseases. One extreme case is provided by irreversible damage of the <em>Conus</em> and <em>Cauda Equina</em>, a spinal cord injury (SCI) sequela in which the human leg muscles may be completely and permanently disconnected from the nervous system with the almost complete disappearance of muscle fibers within 3-5 years from SCI. In cases of this extreme example of muscle degeneration, we have used 2D Muscle Color CT to gather data supporting the idea that electrical stimulation of denervated muscles can retain and even regain muscle. We show here that, if people are compliant, atrophy can be reversed. A further example of activity-related muscle adaptation is provided by the fact that mitochondrial distribution and density are significantly changed by functional electrical stimulation in horse muscle biopsies relative to those not receiving treatment. All together, the data indicate that FES is a good way to modify behaviors of muscle fibers by increasing the contraction load per day. Indeed, it should be possible to defer the muscle decline that occurs in aging people and in those who have become unable to participate in physical activities. Thus, FES should be considered for use in rehabilitation centers, nursing facilities and in critical care units when patients are completely inactive even for short periods of time.


2008 ◽  
Vol 18 (2) ◽  
pp. 3-9 ◽  
Author(s):  
Tadej Bajd ◽  
Marincek Crt ◽  
Marko Munih

The review investigates the objective evidences of benefits derived from surface functional electrical stimulation (FES) of lower and upper extremities for people after incomplete spinal cord injury (SCI) and stroke. FES can offer noticeable benefits in walking ability. It can be efficiently combined with treadmill and body weight support. Voluntary muscle strength and endurance gain can be achieved through FES assisted gait training together with increased gait velocity in absence of electrical stimulator. Cyclic FES, FES augmented by biofeedback, and FES used in various daily activities can result in substantial improvements of the voluntary control of upper extremities.


2020 ◽  
Vol 97 (3) ◽  
pp. 130-136 ◽  
Author(s):  
U. Carraro ◽  
H. Kern ◽  
G. Albertin G. ◽  
S. Masiero ◽  
A. Pond ◽  
...  

Spinal cord injury produces muscle wasting, which is especially severe after the complete and permanent damage of lower motor neurons that occurs in complete Cauda Equina Syndrome. Even in this worst-case scenario, we have shown that permanently denervated Quadriceps muscle can be rescued by surface Functional Electrical Stimulation and a purpose designed home-based rehabilitation regime. Here, our aim is to show that the effects are extended to both antagonist muscles and the skin of the thighs. Before and after 2 years of electrical stimulation, mass and structure of Quadriceps and Hamstrings muscles were quantitated by force measurements. Muscle gross cross section were evaluated using color computed tomography, muscle and skin biopsies by quantitative histology and immunohistochemistry. The treatment produced: a) an increase in cross-sectional area of stimulated muscles; b) an increase in muscle fiber mean diameter; c) improvements in ultrastructural organization; and d) increased force output during electrical stimulation. The recovery of Quadriceps muscle force was sufficient to allow 25% of the compliant subjects to perform stand-up and step-in place trainings. Improvements are extended to hamstring muscles and skin. Indeed, the cushioning effect provided by recovered tissues is a major clinical benefit. It is our hope that, with or without our advice, trials may start soon in Europe and Russia to provide persons-in-need the help they deserve.


Author(s):  
Sascha Sajer ◽  
Giulio Sauro Guardiero ◽  
Bianca Maria Scicchitano

Neuromuscular disorders, disuse, inadequate nutrition, metabolic diseases, cancer and aging produce muscle atrophy and this implies that there are different types of molecular triggers and signaling pathways for muscle wasting. Exercise and muscle contractions may counteract muscle atrophy by releasing a group of peptides, termed myokines, to protect the functionality and to enhance the exercise capacity of skeletal muscle. In this review, we are looking at the role of myokines in the recovery of permanent denervated and elderly skeletal muscle tissue. Since sub-clinical denervation events contribute to both atrophy and the decreased contractile speed of aged muscle, we saw a parallel to spinal cord injury and decided to look at both groups together. The muscle from lifelong active seniors has more muscle bulk and more slow fiber-type groupings than those of sedentary seniors, demonstrating that physical activity maintains slow motoneurons that reinnervate the transiently denervated muscle fibers. Furthermore, we summarized the evidence that muscle degeneration occur with irreversible Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may be permanently disconnected from the peripheral nervous system. In these patients, suffering with an estreme case of muscle disuse, a complete loss of muscle fibers occurs within five to ten years after injury. Their recovered tetanic contractility, induced by home-based Functional Electrical Stimulation, can restore the muscle size and function in compliant Spinal Cord Injury patients, allowing them to perform electrical stimulation-supported stand-up training. Myokines are produced and released by muscle fibers under contraction and exert both local and systemic effects. Changes in patterns of myokine secretion, particularly of IGF-1 isoforms, occur in long-term Spinal Cord Injury persons and also in very aged people. Their modulation in Spinal Cord Injury and late aging are also key factors of home-based Functional Electrical Stimulation - mediated muscle recovery. Thus, Functional Electrical Stimulation should be prescribed in critical care units and nursing facilities, if persons are unable or reluctant to exercise. This will result in less frequent hospitalizations and a reduced burden on patients’ families and public health services.


2010 ◽  
Vol 24 (8) ◽  
pp. 709-721 ◽  
Author(s):  
Helmut Kern ◽  
Ugo Carraro ◽  
Nicoletta Adami ◽  
Donatella Biral ◽  
Christian Hofer ◽  
...  

Background. Spinal cord injury causes muscle wasting and loss of function, which are especially severe after complete and permanent damage to lower motor neurons. In a previous cross-sectional study, long-standing denervated muscles were rescued by home-based functional electrical stimulation (h-bFES) training. Objective. To confirm results by a 2-year longitudinal prospective study of 25 patients with complete conus/cauda equina lesions. Methods. Denervated leg muscles were stimulated by h-bFES using a custom-designed stimulator and large surface electrodes. Muscle mass, force, and structure were determined before and after 2 years of h-bFES using computed tomography, measurements of knee torque during stimulation, and muscle biopsies analyzed by histology and electron microscopy. Results. Twenty of 25 patients completed the 2-year h-bFES program, which resulted in ( a) a 35% cross-sectional increase in area of the quadriceps muscle from 28.2 ± 8.1 to 38.1 ± 12.7 cm 2 ( P < .001), a 75% increase in mean diameter of muscle fibers from 16.6 ± 14.3 to 29.1 ± 23.3 μm ( P < .001), and improvements of the ultrastructural organization of contractile material; and ( b) a 1187% increase in force output during electrical stimulation from 0.8 ± 1.3 to 10.3 ± 8.1 N m ( P < .001). The recovery of quadriceps force was sufficient to allow 25% of the subjects to perform FES-assisted stand-up exercises. Conclusions. Home-based FES of denervated muscle is an effective home therapy that results in rescue of muscle mass and tetanic contractility. Important immediate benefits for the patients are the improved cosmetic appearance of lower extremities and the enhanced cushioning effect for seating.


Sign in / Sign up

Export Citation Format

Share Document